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Abstract

Knowledge discovery from large and complex collections of today’s scientific datasets is a chal-
lenging task. With the ability to measure and simulate more processes at increasingly finer spa-
tial and temporal scales, the increasing number of data dimensions and data objects is presenting
tremendous challenges for data analysis and effective data exploration methods and tools. Re-
searchers are overwhelmed with data and standard tools are often insufficient to enable effective
data analysis and knowledge discovery.

The main objective of this thesis is to provide important new capabilities to accelerate sci-
entific knowledge discovery form large, complex, and multivariate scientific data. The research
covered in this thesis addresses these scientific challenges using a combination of scientific vi-
sualization, information visualization, automated data analysis, and other enabling technologies,
such as efficient data management. The effectiveness of the proposed analysis methods is demon-
strated via applications in two distinct scientific research fields, namely developmental biology
and high-energy physics.

Advances in microscopy, image analysis, and embryo registration enable for the first time
measurement of gene expression at cellular resolution for entire organisms. Analysis of high-
dimensional spatial gene expression datasets is a challenging task. By integrating data clustering
and visualization, analysis of complex, time-varying, spatial gene expression patterns and their
formation becomes possible. The analysis framework MATLAB and the visualization have been
integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic
researchers to directly integrate their analysis with the visualization.

Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-
energy particles and radiation, with wide applications ranging from medicine to physics. To gain
insight into the complex physical processes of particle acceleration, physicists model LWFAs
computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of
varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making
analysis and knowledge discovery from complex LWFA simulation data a challenging task. To
address these challenges this thesis describes the integration of the visualization system VisIt
and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of ex-



tremely large three-dimensional particle datasets. Researchers are especially interested in beams
of high-energy particles formed during the course of a simulation. This thesis describes novel
methods for automatic detection and analysis of particle beams enabling a more accurate and
efficient data analysis process. By integrating these automated analysis methods with visualiza-
tion, this research enables more accurate, efficient, and effective analysis of LWFA simulation
data than previously possible.



Zusammenfassung

Die Analyse komplexer wissenschaftlicher Daten ist eine zentrale Herausforderung in der heuti-
gen Forschung. Komplizierte Vorgänge können immer detaillierter gemessen und simuliert wer-
den. Dies führt dazu, dass aktuelle wissenschaftliche Datensätze Informationen über immer mehr
Datendimensionen und Datenobjekte enthalten. Wissenschaftler werden überwältigt mit Daten,
und herkömmliche Analyseverfahren sind oft nicht ausreichend um eine effektive Analyse der
vorhandenen Daten zu ermöglichen.

Das Hauptziel dieser Dissertation ist es, wichtige neue Methoden zu entwickeln um den ef-
fizienten Gewinn von Wissen von großen, komplexen, multivariaten wissenschaftlichen Daten
zu ermöglichen. Um dieses Ziel zu erreichen, verwendet diese Arbeit eine Kombination aus Vi-
sualisierung, Datenanalyse, und anderen grundlegenden Technologien (zum Beispiel Verfahren
zum Management von großen Daten). Die Effektivität der vorgeschlagenen Methoden wird de-
monstriert anhand zweier unterschiedlicher Applikationen aus der Entwicklungsbiologie und der
Hochenergiephysik.

Fortschritte in der Mikroskopie, Bildanalyse, und Verfahren zur Registrierung von Embryo-
nen ermöglichen zum ersten Mal die Messung von Genexpression mit zellulärer Auflösung
für vollständige Organismen. Räumliche Genexpressionsdaten sind hochdimensional, wobei die
verschiedenen Gene durch komplexe Prozesse miteinander in Verbindung stehen. Die Analyse
dieser hochkomplexen Daten ist schwierig. Durch die Integration von Clustering und moder-
nen Visualisierungsverfahren ermöglicht diese Forschungsarbeit die Analyse von komplexen,
räumlichen und sich zeitlich verändernden Genexpressionsmustern sowie deren Beziehungen
zueinander. Mittels der Integration von MATLAB, einem fortgeschrittenen System zur Daten-
analyse, mit der Visualisierung ermöglicht diese Forschungsarbeit Biologen den Zugriff auf fort-
geschrittenen Analyseverfahren.

Plasmabasierte Kielfeld-Beschleuniger ermöglichen die Erzeugung von hochenergetischen
Partikeln in sehr kurzer Distanz und versprechen in Zukunft die Möglichkeit des Baus von
wesentlich kompakteren Partikelbeschleunigern, die Anwendung in der Medizin wie auch in
der Physik finden können. Rechnergestützte Simulationen werden verwendet, um ein besseres
Verständniss der komplizierten physikalischen Vorgänge zu erlangen. Die resultierenden Simu-



lationsdaten sind (i) extrem groß, (ii) haben unterschiedliche zeitliche und räumliche Auflösung,
(iii) sind heterogen und (iv) hochdimensional. Die Analyse solcher hochkomplexen Daten ist
kompliziert. Durch die Integration des Visualisierungssystems VisIt mit dem Datenmanagement-
system FastBit ermöglicht diese Forschungsarbeit die interaktive visuelle Analyse von extrem
großen dreidimensionalen Simulationsdaten. Im Rahmen der Datenanalyse sind hier insbeson-
dere charakteristische, hochenergetische Partikelbündel, die während der Simulation geformt
werden, von Interesse. Um einen effizienten Datenanalyseprozess zu ermöglichen, wurden im
Rahmen dieser Dissertation verschiedene Verfahren zur automatischen Detektion und Analy-
se von Partikelstrahlen entwickelt. Die Integration dieser automatischen Verfahren mit der Vi-
sualisierung ermöglicht die genaue, effiziente, und effektive Analyse von Simulationsdaten von
Kielfeld-Beschleunigern.
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Chapter 1

Introduction

Knowledge discovery from large and complex collections of today’s scientific datasets is a chal-
lenging task. Due to advances in data acquisition and scientific computing, today’s datasets
become increasingly complex. With the ability to measure and simulate more processes at finer
scales the number of data dimensions and data objects has increased significantly in today’s
scientific datasets while the phenomena researchers are able to investigate become increasingly
complex. Researchers are overwhelmed with data and standard tools are often insufficient to
enable efficient data analysis and, hence, discovery of information and knowledge from the data.

This thesis provides important new capabilities to accelerate scientific knowledge discov-
ery form large, complex, multivariate scientific data. The research presented addresses these
scientific challenges using a combination of scientific visualization, information visualization,
automated data analysis, and other enabling technologies such as efficient data management.

Advances in microscopy, image analysis, and embryo registration enable for the first time
measurement of gene expression at cellular resolution for entire organisms. Using the fruitfly
Drosophila melanogaster as model organism, the Berkeley Drosophila Transcription Network
Project (BDTNP) has developed a novel data acquisition pipeline enabling researchers to an-
alyze the activity of up to several thousand genes at cellular resolution at currently up to six
developmental stages (i.e., timesteps).

Analysis of this novel type of data is a challenging task, in particular due to the large amount
of genes (i.e., data dimensions) and the complex interactions between the many genes. While
visualization is a powerful approach to gain deeper insights into such complex datasets, it is lim-
ited in this case because the intricate and often subtle nature of 3D gene expression data makes
visual detection of all existing features very difficult. Data clustering has already proven to be
very powerful at revealing details from conceptually simpler forms of expression data, such as
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that from microarray experiments, that are not easily detected visually in raw data. Appropri-
ately defining clustering parameters as well as validation and interpretation of clustering results,
however, is a non-trivial endeavor.

By integrating automated data analysis using data clustering and state-of-the-art visualiza-
tion using the visualization system PointCloudXplore (PCX), this research effort has developed
new approaches that overcome the difficulties in both visual analysis and data clustering and en-
able more detailed analysis of 3D gene expression data than previously possible. By providing an
interface between PCX and MATLAB, an advanced data analysis environment, this research pro-
vides researchers direct access to advanced bioinformatics analysis tools enabling more efficient
and accurate analysis. To demonstrate the effectiveness of the developed system, the proposed
framework is used to: (i) define spatial boundaries of gene expression patterns, (ii) characterize
the temporal variation of genes, and (iii) analyze how mRNA patterns are controlled by their
regulatory transcription factors.

The main challenge in the context of 3D gene expression data is given by the large number of
data dimensions and the complex relationships between them; however, the challenges in other
scientific research areas may be quite different. Due to the availability of ever more powerful su-
percomputers and advances in modern scientific computing, simulation of increasingly complex
phenomena at very fine scales becomes possible. Besides complexity of the phenomena under
investigation, the main challenges in the context of high-end numerical simulations often stem
from the amount of data produced by the simulations. Efficient methods for data display as well
as novel data analysis methods are required to enable researchers to effectively investigate and
derive new knowledge from large collections of data. Whereas the data itself is extremely large,
the phenomena and features of interest are often very small making data analysis an ever more
challenging task. Manual detection of the features of interest is time-consuming and in many
cases impossible. Automated methods supporting feature detection in extremely large datasets
promise to enable a more focused and efficient analysis process enabling analysis of even ex-
tremely large simulated datasets. To demonstrate the effectiveness of the proposed integrated
analysis approach based on linking of data analysis and visualization also in the context of large
simulation data, this research effort applies the described concepts to the analysis of laser wake-
field particle accelerator (LWFA) simulation data.

LWFAs promise to be a new compact source of high-energy particles and radiation, with wide
applications ranging from medicine to physics. Laboratory experiments are expensive, require
careful planning, and in practice it is usually impossible to record the complete evolution of
LWFA experiments. Physicists, therefore, model LWFAs computationally to gain insight into
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the complex physical processes.

The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial
and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and
knowledge discovery from complex LWFA simulation data a challenging task. One main feature
researchers are interested in are beams of high-energy particles formed during the course of
LWFA simulations. To enable efficient and accurate analysis of these particle beams, dedicated
mechanisms for selection and detection of particle beams are needed. Furthermore, to support
analysis of selected particle bunches of interest, effective visualization methods are required.

To enable efficient visual analysis and interactive selection of particle beams in extremely
large and complex LWFA simulation datasets, this research describes the integration of the ad-
vanced visualization system VisIt and state-of-the-art data management using FastBit. To provide
the user with an effective interface for performing data selection operations (e.g., to define parti-
cle beams), this thesis describes several new extensions to histogram-based parallel coordinates.
The combination of parallel coordinates as an interface for data selection and advanced scien-
tific visualization methods enables more accurate and efficient analysis of LWFA simulation data
than previously possible. This approach, while applied here to accelerator science, is generally
applicable to a broad set of scientific applications, and is implemented in a production-quality
visual data analysis infrastructure. While visual analysis of particle beams based on interactive
selection is effective, it requires substantial manual input from the user and may, hence, be time-
consuming. Automating the most time-consuming parts of the data analysis process promises
to support a more focused and efficient analysis process enabling the analysis of large collec-
tions of LWFA simulation datasets. This thesis presents (i) automatic beam detection, a method
aimed at identifying the highest energy particle bunch in an LWFA simulation dataset, and, (ii)
automatic beam path analysis, a method aimed at identification and comparison of multiple par-
ticle bunches. By integrating these automatic analysis methods with the visualization, efficient
analysis of LWFA simulation datasets becomes possible. The proposed framework is applied to
address relevant issues, such as (i) detection and definition of particle beams, (ii) analysis of the
formation and acceleration of particle beams, (iii) investigation of the quality of particle beams,
and (iv) comparison of the behavior and quality of multiple particle beams, demonstrating the
effectiveness of the developed system.

1.1 Framework for Knowledge Discovery from Scientific Data

While the challenges in the selected application areas are quite different, the basic analysis frame-
works used for knowledge discovery from these complex types of data are similar. Figure 1.1
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Figure 1.1: Overview of the basic components of the developed analysis framework for knowl-
edge discovery from scientific data.

illustrates the basic compontents of the proposed analysis framework consisting of (i) enabling
technologies, (ii) visualization, and (iii) data analysis.

Enabling technologies are fundamental methods required to enable data analysis and knowl-
edge discovery that may not necessarily be part of the analysis itself. For example, in the case
of extremely large datasets efficient methods for data access are essential to enable effective data
analysis. In the context of large data collections, efficient data management methods, such as
online databases, are required.

To enable effective data exploration, this research makes use of a set of specific scientific and
information visualization methods. Information visualization views are used for visual explo-
ration of variable space and to identify relationships between different data dimensions. Views
of high-dimensional variable space also serve as vehicles for defining advanced queries, enabling
accurate selection of complex data features. Advanced scientific visualization views support de-
tailed analysis of physical data characteristics. Different views —each highlighting different
aspects of the data— are linked via the concept of data selection (brushing). Selected data sub-
sets can be highlighted in any view enabling detailed analysis and knowledge discovery from
complex scientific data.

While interactive data exploration based on linked multiple views is effective, it also has
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limitations. Visual detection of all features, and in particular fine and subtle features, is often
impossible. Furthermore, manual exploration may be a time-consuming process hindering the
analysis of large data collections. Automated data analysis methods promise to overcome these
limitations in visual data analysis by automating the most complex and time-consuming steps of
the analysis pipeline. For example, data clustering allows identification of cells in an embryo that
show similar behavior in gene expression. In the context of LWFA simulation data, efficient data
analysis methods enable automated detection of particle beams and analysis of their temporal
evolution. In practice, interpretation of automated analysis results can produce wrong interpre-
tation or might not be intuitive to comprehend, and proper definition of analysis parameters is
often complicated.

By linking automated data analysis and visualization, this research overcomes the difficulties
in both visualization and automated data analysis. Automating the detection of relevant data
features supports a more detailed and focused data analysis and enables development of visual-
izations that focus on the main data portions of interest, significantly reducing visual clutter and
occlusion of important information. By defining input parameters of data analysis procedures
based on visualization, more accurate and intuitive use of automated data analysis methods be-
comes possible. Visualization also provides means for validation, interpretation, and investiga-
tion of results generated by automated data analysis algorithms. Visualization combined with
automated data analysis enables accurate and efficient analysis of large and complex scientific
data and effectively supports knowledge discovery.

1.2 Overview and Contributions

The following parts of this manuscript are structured as follows. Chapter 2 reviews the state of
the art in data analysis and visualization relevant to this work. Chapter 3 provides and introduc-
tion to 3D gene expression and laser wakefield particle acceleration and describes the relevant
background in developmental biology and physics, respectively. Starting with Chapter 4, only
new results are presented.

Chapter 4 describes the developed framework for knowledge discovery from 3D gene expres-
sion data. Sections 4.1 and 4.2 provide an overview of the main problem and the state of the art
in visual analysis of 3D gene expression data. Section 4.3 provides an overview of the proposed
analysis framework which is explained in detail afterwards in Sections 4.4 to 4.7. The specific
scientific contributions made by this dissertation are the:

(i) application of data clustering to 3D gene expression data (Section 4.4.1),
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(ii) evaluation of the number of clusters k in the context of 3D gene expression clustering
(Section 4.4.2),

(iii) integration of data clustering and visualization into one framework and improvement of
overall analysis quality via dedicated post-processing of clustering results based on visu-
alization (Section 4.5),

(iv) integration of the visualization system PointCloudXplore (PCX) with MATLAB (Sec-
tion 4.6), and

(v) concerning specific application areas, Section 4.7 discusses the use of the proposed frame-
work to: (a) objectively define spatial boundaries of gene expression patterns, (b) charac-
terize the temporal variation of genes, and (c) to analyze how mRNA patterns are controlled
by their regulatory transcription factors.

Chapter 5, describes the developed framework for knowledge discovery from LWFA simula-
tion data. Sections 5.1 and 5.2 provide an overview of the main problem and the state of the art
in analysis of LWFA data. Section 5.3 provides an overview of the proposed analysis framework
which is explained in detail afterwards in Sections 5.4 to 5.8. As specific high-level contributions
of this thesis, Chapter 5 describes:

(i) a novel framework for high-performance visual data exploration of extremely large data
based on the integration of the visualization system VisIt and the index/query system Fast-
Bit (Section 5.4),

(ii) automatic beam detection; a novel approach for automatic detection of the highest-energy
particle bunch based on bunch lifetime analysis and fuzzy clustering (Section 5.5),

(iii) automatic beam path analysis; a novel approach for automatic detection and analysis of
multiple particle beams based on the complete temporal path of the particles that form
them (Section 5.6),

(iv) integration of the automatic analysis with visualization to enable efficient analysis of ex-
tremely large 3D particle datasets (Section 5.7), and

(v) concerning specific application areas, Section 5.8 discusses the use of the proposed frame-
work to address relevant issues, such as (a) detection and definition of particle beams, (b)
analysis of the formation and acceleration of particle beams, (c) investigation of the qual-
ity of particle beams, and (d) comparison of the behavior and quality of multiple particle
beams.

Chapter 6 concludes this thesis with a summary of the described research and also points out
possible directions for future research.
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Chapter 2

State of the Art: Data Analysis and
Visualization

This chapter introduces relevant background material and related work in data analysis and vi-
sualizations. This research makes use of methods from scientific visualization, information vi-
sualization, as well as data analysis. It is beyond the scope of this thesis to provide a complete
overview of these large research fields. The goal of this chapter is rather to provide an introduc-
tion to the various related research areas and the main methods employed in the context of this
thesis. The different main parts of this chapter first provide a high-level overview of the scope of
the different related research fields and afterwards focus on the specific methods relevant for this
work.

Sections 2.1 and 2.2 first provide an introduction to scientific visualization and information
visualization and in particular describe the main visualization techniques used in the context of
this work. Section 2.3 describes the linking of scientific and information visualization views via
the concept of brushing (i.e., data selection). Having introduced the main visualization concepts,
Section 2.4 describes the visualization system VisIt. VisIt is used in this work for visualization
and analysis of laser wakefield particle accelerator (LWFA) simulation data. Afterwards, the
concept of query-driven visualization (QDV), used here to enable efficient visual exploration of
LWFA data, is described in Section 2.5. QDV relies on efficient data management to enable
fast data exploration via a series of data queries. Section 2.6 introduces FastBit, an index/query
system used in the context of this thesis for implementation of the QDV concept in VisIt. This
chapter concludes with an introduction to data classification, i.e., methods used in the context of
this thesis for automatic identification of relevant data features (see Section 2.7).
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2.1 Scientific Visualization

Over the last three decades, many different definitions of scientific visualization have been in-
troduced in the literature. R.A. Earnshaw [1], e.g., defined scientific visualization as follows:
“Scientific visualization is concerned with exploring data and information in such a way as to
gain understanding and insight into the data. The goal of scientific visualization is to promote
a deeper level of understanding of the data under investigation and to foster new insight into
the underlying processes, relying on the humans’ powerful ability to visualize. In a number
of instances, the tools and techniques of visualization have been used to analyze and display
large volumes of, often time-varying, multidimensional data in such a way as to allow the user
to extract significant features and results quickly and easily.”(Chapter 1 in [1]). An alternative
definition by B. McCormick, T. DeFanti, and M. Brown [2] describes visualization as follows:
“Visualization is a method of computing. It transforms the symbolic into the geometric, enabling
researchers to observe their simulations and computations. Visualization offers a method for
seeing the unseen. It enriches the process of scientific discovery and fosters profound and unex-
pected insights. In many fields it is already revolutionizing the way scientists do science.”(in [2]).
A list of various other definitions of visualization can be found online [3].

The main objective of visualization is to enable data understanding and knowledge discov-
ery. The discipline of scientific visualization focuses on the study of the representation of large
collections of scientific numerical data in a way that it can be perceived by humans. Scientific
data commonly has a physical meaning and an inherent spatial structure. Most scientific visu-
alization methods, therefore, focus on visualization in physical space. Scientific visualization
predominantly concentrates on the development and use of graphical techniques to facilitate data
analysis and understanding but also other perceptual stimuli, such as sound and haptic force
feedback approaches, have been incorporated successfully in the visualization process [4, 5].

A typical visualization algorithm can be thought of as a transformation from one data form
into another, e.g., from a scalar value to color (see Chapter 1, [6]). A visualization algorithm may
transform (i) the geometry of the data (e.g., via scaling, translation, or rotation of the data) , (ii)
the topology of the data (e.g., by converting the data from a polygonal to an unstructured grid),
(iii) the attributes of the data (e.g., by computing derived quantities such as vector magnitude),
or (iv) both dataset structure and attribute data (e.g., by computing contour lines or surfaces).
Visualization algorithms are often classified based on the type of data attributes they operate on,
such as scalar, vector, or tensor algorithms.

Scalar data fields define a single numerical value associated with each point and/or cell of a
dataset (e.g., temperature or velocity magnitude). The most common algorithm for visualization
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of scalar data include color mapping, contouring, and direct volume rendering (see Section 2.1.1
for details).

Flow field vector data, for example, describes a two-dimensional or three-dimensional repre-
sention of direction and maginitude, e.g., an air-flow around an airplane. Vector fields are often
visualized via oriented glyphs (e.g., hedgehogs), warping or displacement of geometry, anima-
tion (e.g., by showing the movement of particles in a flow), as well as streamlines and pathlines.

Tensors are commonly represented as a matrix in the context of scientific visualization and
can be thought of as a generalization of the vector concept. Tensors are used, e.g., to describe
the stress in a three-dimensional material — essentially a set of forces of varying strength acting
in all directions within a material — and are often visualized via tensor glyphs.

Besides scalar, vector, and tensor visualization algorithms, there are other techniques that
are applicable to a broader range of data types (such as cutting, slicing, selection, probing, or
subsampling) as well as methods that utilize a combination of different types of data (e.g., glyphs
that are deformed based on stress and colored by temperature). In the taxonomy of visualization
algorithms described by Schroeder and Martin, such visualization algorithms are referred to as
modeling algorithms (Chapter 1, [6]). An overview of the most common visualization algorithms
is provided in [6].

For this work, algorithms for visualization of scalar fields are the most relevant. Section 2.1.1
introduces the most common scientific scalar field visualizations used in the context of this work.

2.1.1 Scalar Field Visualization

In visualization, color is commonly used for display of membership (i.e., to which group or clus-
ter does a datum belong to) or to encode scalar values. Color mapping is one of the most common
scalar field visualizations. Color mapping algorithms map scalar data to colors displayed via the
standard coloring and shading capabilities of graphics libraries and hardware. Commonly, color
mapping is implemented via a color lookup table where the scalar values serve as indices into
the color table. The key to a good color mapping is the proper choice of a color lookup table [7].
Information may be encoded via various aspects of color, such as color value (e.g., red, green,
blue), brightness or saturation of color, as well as transparency. Colors are often mapped onto
two- or three-dimensional objects (such as a wing or car in an airflow) to enhance the visual-
ization. Figure 2.1a shows an example visualization of a scalar field with colors mapped onto
the outer faces of the cube-like volume the scalar field is defined in. The color map used here
is similar to the common rainbow color map, where blue=low, green=medium, and red=high.
In addition to the value of color, the brightness of color is varied periodically to achieve higher
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Figure 2.1: Visualizations of a three-dimensional (3D) scalar field using: a) Color mapping, b)
Three slicing planes colored according to the scalar values and additional contours, c) Semi-
transparent isosurfaces, and d) direct volume rendering. In the color mapping used in the plots
red=high, green=medium, and blue=low scalar values. The visualizations were created using the
visualization system VisIt (see Section 2.4) and show the hardyglobal scalar field of the VisIt
example dataset noise.silo.

contrast.

To be able to investigate inner structures of a volumetric scalar field, one often cuts through
the volume using a surface. The interpolated data values are displayed on the cutting surface.
This technique is in general referred to as cutting. In case that a plane is used as cutting surface
the alternative term slicing is often used instead. In case of vector data the cutting surface
may also be warped or displaced based on interpolated vector values. Figure 2.1b shows an
example where the dataset shown in Figure 2.1a is sliced using three axes-aligned planes centered
in the volume. Scalar values are displayed on the planes using the same color mapping as in
Figure 2.1a. Contours are shown in addition on the slicing planes to highlight the structure of the
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Figure 2.2: Illustration of direct volume rendering (DVR). From the viewer’s eye point, and
passing through a pixel in the image plane a set of rays is cast through the volume. Along each
ray sample points (black spheres) are interpolated to determine the accumulated color value of
the corresponding pixel.

scalar field.

Contouring algorithms construct the boundary surface (or line) between different regions of
a scalar field by computing a surface of constant scalar value (i.e., an isosurface). In the context
of weather forecast maps contours are commonly used to show the separation between regions of
high and low pressure via so-called isobars or the separation between regions of varying temper-
ature via so-called isotherms. A single boundary can be expressed via a n-dimensional iso-value
function F(x1,x2, ...,xn) = c where c is the contour value. Such a contour reveals the separation
between regions with F(x1,x2, ...,xn) < c and F(x1,x2, ...,xn) > c. When using color mapping
for display of scalar fields, a human’s eye often separates colored areas into distinct regions (see
Figure 2.1b). Contouring effectively constructs these boundaries and, hence, supports analysis
of the structure of scalar fields. Figure 2.1c shows an example isosurface visualization of a three-
dimensional scalar field. An overview of a variety of algorithms for isosurface computation is
provided in [6].

While contour-based visualizations are often useful, they may require large amounts of ge-
ometry (e.g., triangles) to accurately represent a surface contained in a volume. Also, contours
are not well-suited for visualization of amorphous phenomena, such as fog, fire, or clouds. Vol-
ume rendering is a technique that allows creation of a two-dimensional image directly from
three-dimensional volumetric data. The basic principle of volume rendering is illustrated in Fig-
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ure 2.2. For each pixel of the image plane a ray is cast through the volume. Along each ray a set
of sample points is obtained via interpolation. The information of the sample points along a ray
is combined to determine the accumulated color value of the corresponding pixel. Depending on
how the samples along a ray are combined, different volume rendering modes are created, e.g., (i)
x-ray rendering mode (sum of samples along the ray), (ii) maximum intensity projection (maxi-
mum sample value found along a ray), and (iii) full volume rendering (the interpolated samples
are processed to simulate the light transport within a volumetric medium) [6]. Volume rendering
can be achieved using various techniques, such as image-order methods (via ray-casting as de-
scribed here), object-order methods (e.g., splatting), or domain-based methods. An overview of
volume rendering is provided in [6] (Part III). Figure 2.1d shows an example volume rendering
of the same dataset used for illustration of color mapping, cutting, and contouring.

2.2 Information Visualization

Information visualization focuses on the study of the visual representation of large collections
of non-numerical information. Information visualization is used typically for the analysis of
large collections of text (e.g., source code), social networks, or business data. Similar to sci-
entific visualization, information visualization focuses on the development and use of graphical
techniques to facilitate data analysis and understanding. In contrast to scientific visualization,
however, information visualization focuses on abstract data with no physical meaning or inher-
ent spatial structure, such as unstructured text or high-dimensional point data. Today’s scientific
data is becoming increasingly complex, large, and high-dimensional. Information visualization
methods have, therefore, found in recent years increasing interest also in the context of scientific
visualization. In the context of scientific visualization, abstract information visualization views
are commonly used in combination with physical views of the data (see Section 2.3).

The following parts of this section introduce various information visualization views used
in the context of this work. Scatter plots (see Section 2.2.1) and parallel coordinates (see Sec-
tion 2.2.2) are two common approaches for the display of abstract, high-dimensional data. De-
scriptive statistic plots are used to summarize statistical properties of the data and to investigate
data distributions (see Section 2.2.3).

2.2.1 Scatter Plots

Scatter plots are a common visualization technique in statistics, information visualization, as
well as scientific visualization [8]. Scatter plots are conceptually the simplest way to visualize
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Figure 2.3: a) Illustration of a two-dimensional (2D) scatter plot in (y, py) space of all acceler-
ated particles (i.e., particles with px > 1010) at a single time step of a laser wakefield particle
accelerator (LWFA) simulation in 2D (see Section 3.2 for an introduction to LWFAs). b) Illus-
tration of a three-dimensional (3D) scatter plot in (x,y, py) space of the same data as shown in a.
The data points of the scatter plot (each representing a particle) are shown via red spheres. The
corresponding 2D histograms are shown in color on the outside surfaces of the cube defined by
the scatter plot (gray/blue=low , green=medium, and red=high particle density).

relationships between two data variables. Two selected variables are mapped to the axes of a
Cartesian coordinate system with each axis ranging from the corresponding variable’s minimum
(at the origin) to the maximum value (see Figure 2.3). Each discrete datum is represented by a
single point in the scatter plot. The location of a data point is specified based on the values of
the corresponding data record in the data dimensions displayed. This concept can be directly
extended to three-dimensional (3D) space (see Figure 2.3). For higher-dimensional data a series
of two-dimensional scatter plots is usually arranged in the form of a matrix showing the scatter
plots of all possible variable pairs (see Figure 2.4 left).

Color and shape of data points are often used to improve the visualization or to display addi-
tional information. Transparency is used to improve depth perception as well as to ease detection
of density structures in scatter plots of large data sets. Piringer et al. [9] introduced a variety
of enhancements to 3D scatter plots, improving depth perception and perception of the sample
distribution in all dimensions. By varying color as well as size of data points depending on the
distance to the viewer, depth perception is improved. Halos (a thin circle around each point)
allow individual data points to be distinguished more easily. Scatter plots are often combined

13



with histogram plots to ease detection of density patterns. In the 2D case, the corresponding 1D
histograms may be shown on the side of each axis. Similarly, 2D histograms can be mapped to
the outer faces of the cube defined by a 3D scatter plot [9]. Due to possible occlusion of the
actual scatter plot, the display of additional histograms may, however, be less effective in the 3D
case.

Recently Bachthaler and Weiskopf introduced continuous scatter plots as a generalization of
the scatter-plot concept to the visualization of spatially continuous data [10]. Rather than by a
collection of discrete data points, the data is represented by a continuous dense plot that considers
the interpolation defined between the discrete data samples.

2.2.2 Parallel Coordinates

Parallel coordinates are a common information visualization technique for high-dimensional data
sets. In the context of this work, parallel coordinates are used for data display as well as for per-
forming data-mining operations based on multi-dimensional thresholding. Parallel coordinates
are believed to be originally invented by Maurice d’Ocagne in 1885 [11] and were later indepen-
dently re-discovered and popularized by Inselberg [12] and Wegman [13]. This section provides
a brief introduction to parallel coordinates and several extensions to standard parallel coordinates.
For a detailed introduction to modern parallel coordinates and their applications see [14, 15].

In parallel coordinates, each data variable of a multivariate dataset is represented by one
axis. The parallel coordinates plot is constructed by drawing for each data record a polyline
connecting the points where the data record’s variable values intersect each axis. As illustrated
in Figure 2.5(top), there is a duality between the Cartesian coordinates as used in a scatter plot
and the parallel coordinate system. A two-dimensional point in Cartesian coordinates maps to
a line segment in parallel coordinates and vice versa. A n-dimensional point in Cartesian space
corresponds to a poly-line consisting of n−1 line segments in parallel coordinates.

One main advantage of parallel coordinates is that they enable visualization of multi-dimensional
data in a single 2D view, rather than multiple independent views such as in a scatter plot matrix
(see Figure 2.4). Within the limitations of the display used, parallel coordinates scale well with
increasing number of data dimensions, i.e., one simply needs to add an additional parallel axis
to add a new data dimension. The number of data dimensions that can effectively be displayed is
mainly limited by the available screen space and the required minimum distance between neigh-
boring axes of the plot. Parallel coordinates have also proven to be an effective tool for data
mining. In particular, parallel coordinates can be used to define multi-dimensional range queries
simply by adding two sliders to each parallel axis. Using these sliders a user can define the data
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Figure 2.4: Left: Scatter plot matrix of an example subset of a particle accelerator simulation
dataset. Right: The same data subset visualized with parallel coordinates. Two sliders are added
to each parallel axis which are used to define multi-dimensional range queries. In this example a
lower and upper threshold is defined in px (rightmost axis). The selected data subset (the focus)
is rendered on top of the main plot (the context).

range of interest in each displayed data dimension. By rendering selected data subsets (the focus)
on top of the main plot of the complete data (the context), a user receives immediate feedback
about important properties of a selection such as the main trends, clusters, and outliers. A simple
example for data selection in parallel coordinates is shown in Figure 2.4 (right).

Parallel coordinates also have substantial disadvantages. Parallel coordinates are an expen-
sive plot in the sense that many pixels are required to represent a single data record. The over-
plotting of the many polylines required to display all data records from a large dataset quickly
causes the plot to appear cluttered and leads to data occlusion. In particular in the context of
large datasets, connections of polylines at the different axes can become visually misleading so
that it is often impossible to follow the trend of a single data record through the plot. Parallel
coordinates are also an order dependent visualization, i.e., depending on how the different axes
— each representing one data dimension — are ordered, a user may be able to see different
relationships in the data.

Many extensions of parallel coordinates focus on improving the rendering, and in this way
the visual appearance and interpretability of parallel coordinates. Color is commonly used to
ease distinction of individual data lines as well as to represent additional information to allow,
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Figure 2.5: Illustration of line-based parallel coordinates (top) and histogram-based (binned)
parallel coordinates (bottom).

e.g., detection of relationships between one variable and all other data dimensions displayed.
Wegman and Luor [16] proposed the usage of transparency and over-plotting of translucent data
points/lines. This method highlights dense areas while sparse areas fade away, thus revealing in-
herent data characteristics. With no a priori knowledge about how many data lines pass through
the same pixel, the alpha channel of color becomes quickly saturated so that the effectiveness of
this approach is limited in particular in the context of large data. Graham et al. proposed the use
of curves instead of poly-lines to improve the visual display and readability of parallel coordi-
nates [17]. Moustafa and Wegman proposed generalized parallel coordinates, a generalization of
parallel coordinates based on parameter transformation [18]. Depending on the applied interpo-
lation function regular parallel coordinates (using piecewise Lagrangian interpolation), smooth
parallel coordinates (using spline-based interpolation), and other variants of parallel coordinates
can be created.
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Other extensions to standard parallel coordinates focus on the parallel axes themselves and
their generalization. Re-ordering [19], scaling, and flipping of parallel axes as well as data reduc-
tion [20] have been used to reduce visual clutter and to enable detection of different relationships
in high-dimensional data. In order to display additional information within parallel coordinates,
a common approach is to generalize the parallel axes to be plots themselves. Commonly the
parallel axes are simply overlaid with box-plots or histogram plots of the data to provide ad-
ditional information about statistical properties of the data [21]. Parallel coordinates have also
been extended to three-dimensional (3D) visualizations by modifying the parallel axes to be
two-dimensional (2D) plots. Using this principle, Fanea et al. [22] combined star-glyphs and
parallel coordinates in which each axis of a parallel coordinates plot is itself a star-glyph. Rübel
et al. [157] combined 2D scatter plots and parallel coordinates to enable effective visualization
of 3D gene expression data via 3D parallel coordinates (see Section 4.2.2.3 for details).

Several extension to standard parallel coordinates focus on the representation of data subsets.
Effective display of data subsets is particularly important in the case that parallel coordinates
are used for data mining through manual data selection as well as analysis of pre-classified data.
Distortion operations, such as dimensional zooming, support a more detailed analysis of data
subspaces [23]. Fua et al. [23] and Novotny [24] proposed the usage of color bands for visu-
alization of selections (or clusters) in parallel coordinate views and McDonnell et al. proposed
illustrative parallel coordinates.

Many extensions to parallel coordinates have been proposed with the goal to enable visual
analysis of large datasets by creating data-dependent aggregate visualizations. Fua et al. [23] pro-
posed using hierarchical parallel coordinates based on hierarchical clustering to create a multi-
resolution view of the data that enables data exploration at varying levels of detail. Johansson
et al. [25] used clustering to determine the inherent structure of data and displayed that structure
with high-precision textures using different texture transfer functions. Novotný used a binning
algorithm based on a k-means clustering approach for creating an aggregate parallel coordinates
visualization [24]. All these approaches are well-suited for presenting static data, but are not
well-suited for time-varying data since defining temporally consistent clusters is non-trivial and
computationally expensive.

The histogram-based parallel coordinates approach proposed in this thesis (see Section 5.4.2)
extends the work of Novotný and Hauser [26], who proposed using binned parallel coordinates
as an output-oriented (rendering) approach. Rather than rendering one line per data point, the re-
lationship between neighboring axes is first discretized via 2D histograms (see Figure 2.5). Each
non-empty bin of a 2D histogram is represented by a rectangle connecting the corresponding
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data ranges on the respective neighboring axes. The main limitation of the approach proposed
by Novotný and Hauser is that in order to achieve interactive rendering speed, their method pre-
computes all possible 2D histograms with a fixed resolution of 256× 256 using regular, equal-
sized histogram bins. To implement different level-of-detail views, bins in the pre-computed
histograms are merged, reducing the number of bins by half in each drill-down step. While this
strategy is efficient, it has several limitations. First, it does not allow for smoothly drilling into
finer-resolution views of the data. Second, it supports presentation of binned views of the entire
dataset, but does not support user-defined data subsetting. Finally, the fixed 256×256 histogram
resolution exhibits significant aliasing when zooming in on narrow variable ranges in the parallel
coordinates plot. Their approach uses binned parallel coordinates for context views and tradi-
tional, polyline-based parallel coordinates for focus views. These focus views may still contain
a substantial number of data records and suffer from extensive occlusion as a result.

2.2.3 Descriptive Statistic Plots

Descriptive statistics are used to quantitatively describe the main features of a data collection. By
summarizing data distributions through a small set of parameters, important data characteristics
can be extracted and represented in a concise fashion. In the context of this research, descriptive
statistic are used mainly for the purpose of understanding data subset characteristics essential
for validation of results from data classification and data mining. Common measurements used
in the context of descriptive statistics are the median, mode, mean, variance, standard devia-
tions, and quantiles. The most common statistics plots used in the context of this work are the
box plot, histogram plot, average curve plot, and scatter plot. Scatter plots were introduced in
Section 2.2.1. This section focuses on the box, average curve, and histogram plot. A detailed
introduction to statistics and their use for data analysis is provided in [27].

The box plot is a standard technique for presenting summary statistics. In the context of this
work, the box plot is used to show minimum and maximum range values, standard deviation,
and average value. Depending on the application, other values, such as upper and lower quartiles
instead of standard deviation or median instead of mean, may be shown. Figure 2.6a illustrates
the typical box plot variant used in this work. The box plot is bound by two lines indicating
the minimum and maximum value of the data and an additional line showing the average value.
A box centered around the average value is used to indicate the standard deviation. The box
plot provides and easy way to summarize the distribution of a dataset through the display of
a collection of statistical values. Furthermore, the reduced box-plot representation allows for
fast comparison of different datasets (here often subsets of the same dataset), since only a few
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Figure 2.6: Example statistic plots created using the visualization system PointCloudXplore (see
Section 4.2). a) Box-plot comparing the expression characteristics of a set of clusters (each
selecting a subset of cells) in a selected gene. b) Average curve plot with error bars showing
the average expression profiles of a set of clusters in a series of genes. c) Histogram plot of the
expression values of a single gene in all cells of a Drosophila embryo.

statistical measurements, rather than the whole data, need to be analyzed. A survey of the box
plot is provided by Potter [28].

Average curve plots are commonly used for visualization of data trends (see Figure 2.6b).
Similar to parallel coordinates, the different data dimensions are arranged along the horizontal
axis (x). The vertical axis (y) is used for display of average values in the different data di-
mensions. Neighboring average values are connected via line segments to indicate data trends.
Average curve plots are often used to show, e.g., the variation of variables over time. Depending
on the distribution of the data the average value may not be a good representative value. Error
bars indicating, e.g., the standard deviation, are therefore often added to the plot. In some cases
the average curve plot is also combined with the box plot.

Histograms are commonly used for investigation of data distributions. A histogram plot
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is a graphical way of presenting a frequency distribution. The data (if not categorical) is first
subdivided into a set of bins, each representing a discrete data range. The value of each bin is
defined based on the number of data records within the corresponding data range. Histograms
are commonly visualized using bar-graph or curve plots (see Figure 2.6c).

2.3 Linking Scientific Visualization and Information Visual-
ization

Multiple views, each highlighting a different aspect of the data, are commonly used to analyze
complex data. In the simplest form, multiple visualizations of various variables of the same data
are visualized in multiple views with the same physical context, e.g., one map for temperature
and a second map for pressure. Linking of the camera view and timestep allows for effective
linking of different scientific visualizations with the same physical context.

With scientific data becoming increasingly high-dimensional and large, systems that support
linking of multiple different views become increasingly important. Baldonado et al. described
in their work a set of guidelines for multiple view systems [29]. Henze [30] proposed a system
based on multiple views (termed portraits) for exploration of time-varying computational fluid
dynamics data sets; advanced queries can be performed by selecting data subsets in these por-
traits. In the WEAVE system, a combination of Physical Views and Information Visualization
Views is used for exploration of cardiac simulation and measurement data [31]. Doleisch et
al. [32] formalized the concept of using abstract views to define data queries, a concept that is
implemented, e.g., in the SimVis system [33].

It is often useful to interactively select data samples from a visual data representation, an op-
eration generally referred to as brushing. A brush is an object that defines one specific selection
of data samples. Furthermore, by highlighting brushes defined in one view in all other views,
identification of further data properties becomes possible. In the literature this process is also
termed linking. Linking multiple views via the concept of brushing enables detailed analysis of
high-dimensional data. To enable definition of data selections based on the information shown
in different views, one may combine multiple brushes via logical operations such as AND (inter-
section), OR (combination), or NOT (inversion) [32]. Interactivity is important in the context of
data selection for visual data exploration. Providing immediate feedback about selection results
enables iterative definition and refinement of data queries and supports accurate feature selection.
Query-driven visualization addresses this issue by combining visualization and state-of-the-art
index/query methods (see Section 2.5).
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Figure 2.7: a) Parallel coordinates plot of the complete dataset (gray) and a user-defined selection
(green). b) Pseudocolor plot of the same user-defined data subset as shown in a. The visualiza-
tions were created using the VisIt system (see Section 2.4) and show the VisIt example dataset
noise.silo.

In Figure 2.7, parallel coordinates are used to select cells with high values in the variable
hardyglobal of VisIt’s example dataset noise.silo (see also Figure 2.1). While parallel coordi-
nates are an effective tool for display and selection in high-dimensional data, the relationships
between different cells in physical space are not intuitively revealed. A pseudocolor plot is,
therefore, linked to the parallel coordinates view to evaluate the spatial patterns defined by the
selection.

2.4 High-performance Visual Data Analysis using VisIt

Many commercial and open source visualization packages are available for visualization of large
scientific data, such as VisIt [34, 35], ParaView [36], or EnSight [37]. This section focuses
on VisIt. VisIt is widely used within the DOE1 research community and is used in this work
for visual analysis of laser wakefield particle accelerator simulation data. VisIt was originally
described by Childs et al. [35] who demonstrated a data processing and visualization architecture
that is capable of scaling to extreme dataset sizes. VisIt [34] has been shown to scale to several
billion data points per timestep and runs in parallel on nearly all modern HPC platforms.

1DOE=Untied States Department of Energy. See http://www.energy.gov/

21



The basic design of VisIt follows the client-server model with the most expensive computa-
tions being executed in parallel by the server (see Section 2.4.1 for details). The client-server con-
cept supports effective remote visualization while the parallel implementation of the server en-
ables fast processing of extremely large datasets. VisIt’s remote visualization capability crosses
several independent axes. In addition to parallelization of data fetching, VisIt also performs data
extraction and calculation entirely in parallel. Finally, rendering may be done in serial or parallel,
depending on the data load. If the resulting geometry is small enough, it is collected at the HPC
side and transferred across the network to the user’s desktop for GPU-based rendering. How-
ever, if the geometry is too large for interactive display on a single GPU, VisIt employs sort-last
rendering and compositing on the HPC system and transferres the computed pixel information
(i.e., the image) across the network to the user’s display. This so-called scalable rendering mode
model has many parallels to remote visualization architectures such as those in ParaView and
EnSight.

VisIt employs a contract-based data flow network to enable efficient visualization while al-
lowing new components to be flexibly added via plugins (see Section 2.4.2 for details). Via the
contract, each component can describe its impact on the pipeline allowing dedicated optimiza-
tions to be applied. VisIt’s plugin capability allows for dynamic incorporation of new plots for
data display, operators for data manipulation, or database modules for data access. VisIt cur-
rently supports over twenty plots, more than forty operators, and over eighty file formats. VisIt
furthermore supports analysis concepts such as expressions (i.e., creation of derived quantities)
or queries (i.e., extraction of quantitative information from data). The following two subsections
provide an overview of the high-level design of VisIt (see Section 2.4.1) and the contract-based
visualization concept it employs (see Section 2.4.2).

2.4.1 High-level Design of VisIt

Figure 2.8 depicts the high-level design of VisIt as described in [38] and [39]. VisIt consists
of several main components (essentially different programs) that communicate with each other
through sockets. The main components running on the client side — usually the user’s local
workstation — are the (i) GUI, (ii) Viewer, and (iii) Command line interface (CLI ). The main
components running on the server side — either a remote computer or the user’s workstation —
are the (iv) VisIt component launcher (VCL ), (v) database or meta-data server (mdversver), and
(vi) the compute engine (Engine) running in serial (engine ser) or parallel mode (engine par).

The main purpose of the VisIt components running on the local workstation is to provide
appropriate user controls and to display analysis results. The main user controls are provided via
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Figure 2.8: High-level design of VisIt.

the GUI and the CLI interface. The GUI provides a graphical interface allowing the user, e.g.,
to load data, set up visualization pipelines, define expressions and queries, or to define system
settings. The CLI interface provides a python-based command line interface for the control of
VisIt. The CLI is useful, e.g., to define macros or to implement visualization scripts for plots and
animations. The Viewer component serves two main purposes. VisIt’s state is centralized in the
viewer, i.e., when VisIt’s state changes, then the Viewer notifies the other compontents and up-
dates the system accordingly. The Viewer is furthermore responsible for managing visualization
windows including rendering, display, and manipulation of visualizations.

The VisIt components running on the server side are responsible for performing the actual
analysis including data loading, execution of the analysis and visualization, and if requested also
rendering. The VisIt Component Launcher (VCL) is a small component launched by VisIt on
remote computers when running in distributed mode. The main purpose of the VCL is to launch
jobs on remote computers. The mdserver is a lightweight component for file access. The md-
server browses remote file systems to create listings of the contents of remote directories and
loads meta-data of files to allow the user to set up visualization pipelines without an active com-
pute engine. The Engine is the component that performs the actual data processing in response to
requests from the Viewer. VisIt supports a serial (engine ser) as well as a parallel compute engine
(engine par). In case that the user requests the scalable rendering mode, the Engine also performs
the rendering and sends pixels (rather than geometry, i.e., polygons, lines, and/or points) to the
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Viewer for display.

The communication between the different components of VisIt is implemented on the lowest
level via sockets. To ease communication, two additional communication layers are built on top
of the low-level, socket-based communication. The first communication layer is designed for
exporting the system state. The Viewer manages the system state in various AttributeSubjects
objects. User interface modules subscribe to a state, so that the state is automatically pushed
to the subscribed modules upon change. The second high-level communication component im-
plements remote procedure calls (RPCs). RPCs are implemented via proxy classes that other
modules can link to and issue method calls which in turn become RPCs. RPCs are used when
one component needs another component to perform a particular operation. Within VisIt, RPCs
are used to allow, e.g., the CLI or GUI to initiate changes of state in the Viewer, to allow the
Viewer to request that the mdserver should open a file, or to allow the Viewer to initiate an action
in the Engine.

2.4.2 Contract-based Visualization Pipeline

VisIt employs a contract-based data flow network design that allows for pipelining and I/O op-
timization, reducing unnecessary processing and disk access [35]. The two base object types of
the network are data objects and components. There are three types of components, which are
filters, sources, and sinks. Sources are the origin of the data and, hence, only have an output
which are data objects. Filters take data objects as input, apply some transformation, and output
the result again as data objects. Sinks have only data object inputs. A pipeline is defined by a
collection of components with a source component at the beginning, followed by a series of filter
components, and finally a sink component. Figure 2.9, illustrates a typical execution pipeline
as described in [35, 38]. The source is typically a file reader responsible for reading data from
disk and the sink component is typically a rendering engine. When run in parallel, VisIt sets up
identical data flow networks on every processor, each of which is responsible for a portion of
the data. The load balancer decides in this case which portion of the data each processor should
process.

The execution of a VisIt pipeline is demand-driven. The first step of a pipeline update con-
sists of a pull operation by the sink to acquire the needed data. The pull operation in turn causes
the sink to generate an update request that is propagated up the pipeline via the filter components
to the source. The source component generates (loads) the requested data. Execute phases after-
wards propagate through the pipeline until the sink is reached, i.e, the data object created by the
source serves as input to the first filter which performs some operation and passes the resulting
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Figure 2.9: Illustration of a contract-based visualization pipeline. The thin arrows denote the
update of the pipeline. During the update, the original version of the contract (V0 ) originates
from the sink, which is often a renderer. The contract is passed through the different filters of the
pipeline, each of which may modify the contract according to its specific needs (contract version
V1-V3 ). The load balancer decides on the further execution and passes the information to the
sink (usually a file reader). The sink loads the data and initiates the execute phase of the pipeline
(thick arrows in the figure).

output data object on to the next filter. In this manner the data is passed from filter to filter (each
performing some operation) until the sink component is reached.

In VisIt, a contract is passed through the pipeline during the update phase along with the
update request. The contract allows different components of a pipeline to communicate with
each other. Using the contract, each component can describe its impact on the pipeline, allowing
dedicated optimizations to be dynamically applied to, e.g., minimize the data read from disk,
modify how the data is treated, or to modify the way the data moves through the pipeline. The
contract provides an abstraction from the specification of components allowing description of
the impact of different components without specific knowledge about the individual components
themselves. This contract-based design eases (i) integration of new components into VisIt (a new
component simply needs to be able to describe its impact) and (ii) management of a large number
of components, because different components can be developed and maintained independently
of each other.

The different main components of the pipeline (plots, operators, databases) are implemented
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in VisIt as plugins. A plugin is a library that is loaded at startup. The plugin concept allows
developers to add new capabilities to VisIt without having to modify the actual core system.

Using VisIt’s extensible contract-based system, this work implements efficient methods for
particle selection and particle tracing in VisIt and presents a novel approach for rendering of
histogram-based parallel coordinates used for efficient data exploration (see Section 5.4 for de-
tails).

The following section introduces query-driven visualization (QDV) (see Section 2.5), a feature-
based visualization concept used in the context of this work to enable efficient exploration of
extremely large data sets. Afterwards, Section 2.6 introduces FastBit, a data index/query system
used in this work for implementation of QDV within VisIt.

2.5 High-performance Query-driven Visualization

The term query-driven visualization (QDV) was introduced by Stockinger et al. to describe a
combination of high-performance indexing and querying capability (see Section 2.6) with visual
data exploration tools [40]. Aimed towards the analysis of massive datasets, QDV allows users
to quickly search the data for features of interest. The visualization is focused on the selected
features, significantly reducing the amount of data presented to the user.

In their work, Stockinger et al. [40] compared the performance of (i) their index/query sys-
tem based on bitmap indexing combined with visual data exploration with (ii) state-of-the-art,
tree-based searching structures that form the basis for a widely used contouring implementation.
Their work shows that their approach outperforms tree-based search structures for scalar vari-
ables, and also points out that all tree-based index/search structures are not practical for large,
multivariate datasets since they suffer from the so-called curse of dimensionality [41]. The basic
idea is that storage complexity grows exponentially as one adds more and more search dimen-
sions (e.g., more variables to be indexed/searched).

These concepts were later extended to the analysis of massive collections of network traffic
data in two related works. First, the notion of performing network traffic analysis using statistics
(e.g., histograms) rather than raw data led to a methodology that enabled exploration and data
mining at unprecedented speed [42]. That study showed the use of these concepts to rapidly
detect a distributed scan attack on a dataset of unprecedented size – 2.5 billion records. Users
are presented with an interface consisting of histograms of individual variables, and then they
formulate a complex query via a process that is essentially a histogram “cross product.” The pro-
cess of data mining was subsequently accelerated through a family of algorithms for computing
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conditional histograms on SMP parallel machines [43].

Visualization techniques, like QDV, that focus on specific features of the data are also re-
ferred to as feature-based visualizations. In the context of QDV, the features of interest are usu-
ally defined by the user via dedicated data queries. Other featured-based visualization methods
automate the feature detection step by choosing an appropriate filtering process [6].

As part of this research effort, the extension of the concept of QDV to the analysis of laser
wakefield particle acceleration (LWFA) data is described. By combining the state-of-the-art
index/query system FastBit with high-performance visualization using VisIt, efficient exploration
of extremely large, complex, high-dimensional data becomes possible (see Section 5.4). This
thesis also describes novel methods for automatic feature detection in LWFA simulation data
and presents dedicated visualizations for the analysis of the so defined features (here particle
bunches). To achieve good performance in the context of QDV as well as automatic data analysis,
this work makes use of efficient data access methods described in the following section.

2.6 High-performance Index/Query for Data Mining

In many cases only a subset of the data is actually relevant for the data analysis. In the context of
laser wakefield particle acceleration, e.g., only a fraction of all particles is accelerated to relevant
levels of energy and are of interest for the analysis. In the context of query-driven visualization,
e.g., a user usually issues a series of queries, each focusing on different features of interest or
refining earlier queries. Automatic analysis algorithms often employ dedicated data reduction
methods to ensure that at each analysis step only the relevant data is considered.

To achieve good performance it is paramount that the visualization and analysis algorithms
are able to identify and access data subsets of interest quickly. This is particularly important in
the context of extremely large data sets. In the context of the analysis of extremely large LWFA
simulations, this work makes use of state-of-the-art data management to be able to quickly: (i)
evaluate range queries, (ii) compute conditional histograms, and (iii) trace particles using ID
queries, significantly improving the overall computational performance of the proposed analysis.

The commonly used strategy for accelerating selective data accesses is called indexing in
database terminology. A standard database indexing technique is the B-tree [44]. B-trees have
properties favorable for transaction-based applications that require frequent updates to the under-
lying base data and the index. The data access patterns for data mining and analysis applications,
however, tend to be read-only. The database indexing technology that is best suited for this type
of data access is known as the bitmap index [45, 46]. The core idea of a bitmap index is to use a
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RID 1 2 3 4 5 6 7 8
I 0 1 3 2 3 3 1 3

bitmap index
=0 (b1) 1 0 0 0 0 0 0 0
=1 (b2) 0 1 0 0 0 0 1 0
=2 (b3) 0 0 0 1 0 0 0 0
=3 (b3) 0 0 1 0 1 1 0 1

Figure 2.10: A sample bitmap index where RID is the record identifier and I is the integer
attribute with values in the range of 0 to 3. Each bitmap bi represents one value j. Each bit of a
simple bitmap bi represents one data record and indicates whether the value of the corresponding
record is j (bitvalue 1) or not (bitvalue 0). Using bitmap indexing, one only needs to perform
bitwise logical operations such as b3 | b4 to find the records that satisfy conditions such as I > 1.

sequence of bits to mark the positions of records satisfying certain conditions.

The illustration in Figure 2.10 shows four simple uncompressed bitmaps, b1, b2, b3, and b4,
where each of them represents whether the value of I is 0, 1, 2, or 3. To find the rows that
satisfy condition such as I > 1, one only needs to perform bitwise logical operations such as b3 |
b4. Because bitwise logical operations are well-supported by all computers, the answer to such
conditions can be computed efficiently. Based on a bitmap index, the data records that correspond
to a query, such as X > 5, can be identified without having to access the raw data [47, 48].

Without compression, the size of a bitmap index increases linearly with the number of
bitmaps used. In uncompressed form, such bitmap indices may require too much space for
variables with many distinct values, such as particle position or momentum. To improve the effi-
ciency of the bitmap indices on such variables and control index size, many different techniques
have been proposed [49, 50]; the most common ones being binning, encoding, and compres-
sion. Binning and encoding are different ways of controlling the number of bitmaps per index.
Compression is used to reduce the size of individual bitmaps.

To enable efficient analysis of extremely large LWFA simulation data, this research makes
use of a bitmap index software called FastBit [51]. FastBit implements the fastest known bitmap
compression technique [52, 53], and has been demonstrated to be effective in a number of data
analysis applications [42, 54]. In particular, it has a number of efficient functions for computing
conditional histograms [43], which are crucial for this work. Furthermore, FastBit indices are
relatively small compared to popular indices such as B-trees [52, Fig. 7] and can be constructed
much faster than others [47, Fig. 12]. Bitmap indices are well-known for their effectiveness on
data with a relatively small number of distinct values, such as gender. FastBit indices have been
demonstrated to be very efficient also for data with a large number of distinct values through its
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unique compression [50] and binning [48] capabilites.

When a variable has a large number of distinct values, such as temperature expressed as
floating-point values, the corresponding FastBit index is typically based on a binned version of
the data, where a bit is 1 if the value of a record falls in a particular bin. In this case, the number
of 1s in a bitmap corresponding to a bin is the number of records in the bin. This provides an
efficient method for computing a histogram [43]. FastBit offers a number of different options
for creating bitmap bins. When composing range queries, users typically specify conditions with
relatively low-precision values, such as pressure less than 1 ∗ 10−5 or momentum greater than
2.5∗108. The constant 1∗10−5 is said to have 1-digit precision, and the constant 2.5∗108 have
2-digit precision. FastBit can build indices with bin boundaries with any user-specified precision
so that all queries involving low-precision boundaries can be answered accurately based on the
index only.

The work presented in Chapter 5 makes extensive use of two additional features of FastBit
specifically enhanced for this work: i) ID queries; and ii) a special function for computing of 3D
conditional histograms. To track a set of particles in a LWFA simulation dataset through time,
FastBit can extract all particles with a given set of identifiers (IDs) from all time steps via queries
of the form ID = 0||ID = 1|| . . . ||ID = n. This query may involve several million IDs, which can
take a long time just to parse the query string. FastBit provides a mechanism to directly input the
list of IDs to reduce the query response time.

FastBit has shown to be effective for the computation of 1D and 2D conditional histograms
(see [43] and [158]). This research extends FastBit to enable efficient computation of 3D con-
ditional histograms and to export bit vectors for representing particles (data records) associated
with the bins of a histogram. These bit vectors allow the analysis to directly retrieve the in-
formation related to the corresponding particles enabling fast data-access, leading to significant
improvement of the computational performance of the automatic beam path analysis pipeline
described in Section 5.6.

2.7 Data Classification for Scientific Data Analysis

Data classification is the systematic grouping of data into categories according to some crite-
ria. Data classification methods are commonly used for identification of data subclasses and
discovery of characteristic features of the underlying data as well as for simplification of the data
representation to facilitate data analysis.

Data classification may be performed using automatic, semi-automatic, or manual classifica-
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tion procedures. One sometimes also distinguishes between segmentation and machine-learning-
based classification methods. Segmentation methods commonly subdivide the data based on
predefined criteria, e.g., by identifying regions associated with maxima of the data, whereas ma-
chine learning methods typically try to minimize an objective function. In practice, such a clear
distinction is, however, often not possible. In the context of machine learning, one commonly dis-
tinguishes between supervised and unsupervised learning methods. Supervised learning refers
to a set of techniques for learning of a function from training data. Supervised learning may
be used for prediction of continuous functions (i.e., regression) or to predict class labels (i.e.,
classification). The training data for supervised learning consists in general of pairs of input data
objects and the desired output. In contrast to supervised learning, unsupervised learning methods
seek to predict a model directly from unlabeled data, i.e, without the use of pre-labeled training
data.

This research makes use of two main data classification methods, i.e., region-growing and
data clustering. Region-growing refers to a set of methods for segmentation of data into sub-
groups by identifying regions that correspond to a set of seed points (see Section 2.7.1). Data
clustering is a class of techniques for unsupervised classification of data samples into groups of
similar behavior (see Section 2.7.2). In the context of this work, region-growing is commonly
used for detection of specific data features (i.e., identification of a set of data samples from the
complete data), whereas data clustering is used for partitioning of the complete data into sub-
classes. This section concludes with a description of the concept of ensembles. Ensembles are a
set of methods aimed at integration of multiple learned models (see Section 2.7.3).

2.7.1 Introduction to Region-Growing

Region-growing refers to a set of algorithms that group subregions into larger regions based
on predefined criteria for growth. Region-growing is a popular approach in image analysis and
is here used for image segmentation [55, 56, 57]. The basic method is to start with a set of
seed points. From the seed points, the algorithms grows larger regions by appending to each
seed those neighboring pixels with predefined properties similar to the seed (such as specific
ranges of the variables) [55]. Depending on the application, seed points for region-growing may
be defined automatically (e.g., as maxima of the underlying function) or manually by the user.
Commonly, a set of seeds is selected based on properties of the underlying data. In case that
no a priori information about good seeds is available some methods use as many starting points
as the total number of data points. The procedure is to compute the same set of properties for
each starting point to allow region-growing. Besides selection of proper seeds, criteria such as

30



a) b) c)

Figure 2.11: Illustration of common topologies used to define the neighbors of data points. In all
figures the center point is shown in red, its direct neighbors in green, and its diagonal neighbors
in blue. a) Common neighbor stencils in 2D image data include the (i) 4-neighbor stencil (only
green neighbors) and the (ii) 8-neighbor stencil (green and blue neighbors). b) Common neighbor
stencils in 3D image data include the (iii) 6-neighbor stencil (only green neighbors) and the (iv)
26-neighbor stencil (green and blue neighbors). c) Illustration of the topology used in the case
of 3D gene expression data. Cells that share an edge in the approximated Voronoi tessellation of
the embryo’s blastoderm surface are considered neighbors.

the used topology (neighborhood) and stop criteria are important parameters of region-growing
algorithms.

The used topology determines which points are considered as neighbors of a data point and,
hence, defines the possible directions of growth. In the context of image segmentation, pixels are
typically organized on a regular grid. Depending on which pixels are considered as neighbors,
different types of neighborhood stencils can be defined, e.g., in the case of 2D image data the
(i) 4-neighbor stencil, i.e., only direct neighbors in positive and negative x and y direction, or
the (ii) 8-neighbor stencil, i.e., the 4-neighbor stencil plus the diagonal pixel neighbors (see
Figure 2.11a). Similarly, the 6- and 26-neighbor stencil can be defined in the case of 3D image
data (see Figure 2.11b). In more complex cases, such as scattered data, a topology may not be
given and must be defined first. In the case of 3D gene expression data, the neighborhood of a
cell is defined based on the approximated Voronoi diagram of the embryo’s blastoderm surface
[159] (see Figure 2.11c).

The proper choice of stop criteria largely depends of the underlying problem. In the simplest
case, stop criteria are defined via thresholds in the underlying scalar field, either manually by
the user or automatically by the algorithm, e.g., relative to the scalar values of the seed. When
derivatives of the underlying scalar field can be defined, other stop criteria, such as “Stop the
growth when an inflection point of the function is reached,” may be employed.
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Region-growing is used in the context of 3D gene expression data for automatic seed cell se-
lection [159] (see Section 4.2.2.2). This research also employs region-growing methods based on
three-dimensional histograms of the data for identification of particle bunches in laser wakefield
particle accelerator simulation data (see Section 5.6.4).

2.7.2 Introduction to Data Clustering

Data clustering is a class of techniques for unsupervised classification of data samples (e.g., cells)
into groups (clusters) of similar behavior. Data clustering provides a means for the automatic
discovery of data subclasses [58].

With increasing size and complexity of today’s scientific data, computational methods, such
as data clustering, that promise to enable automatic detection of characteristic data features be-
come increasingly important. Researchers are faced with ever increasing amounts of data and
information, prohibiting a purely manual analysis process. Data clustering is a challenging prob-
lem. Depending on the underlying data, clusters may have significantly different structures. Be-
sides few generic concepts and methodologies, this has led to the development of a large range
of clustering algorithms specifically designed for the analsis of specific types of data.

A taxonomy of clustering algorithms can be defined based on various criteria. The most com-
mon criteria are based on the type of output a clustering algorithm produces (hard/fuzzy-partition
and hard/fuzzy-hierarchy), the type of criteria employed to define clusters (e.g., density-based,
model-based, or mean-square-error), as well as the type of algorithms employed to compute the
clustering and their various computational characteristics (e.g., graph-based, expectation max-
imization, artificial neural network (ANN), or agglomerative vs. divisive and stochastic vs.
deterministic). Based on the output of clustering algorithms, one commonly distinguishes be-
tween hard and fuzzy clustering algorithms. A hard clustering algorithm assigns each data item
to exactly one cluster, whereas a fuzzy clustering algorithm defines for each data item a vector
describing its degree of membership in all clusters, i.e., the likelyhood of the data item to be-
long to a particular cluster. A hard clustering can be derived from a fuzzy clustering simply by
assigning each data item to the cluster that it is most likely to belong to. Other common criteria
for differentiation of clustering algorithms include, e.g., deterministic vs. stochastic algorithms
and partitioning vs. hierarchical clustering algorithms. Figure 2.12 shows an example taxonomy
including all clustering algorithms used in the context of this thesis. The shown hierarchy of
clustering algorithms is a refinement of the taxonomy proposed by Jain et al. [58].

In order to be able to identify groups of similar data items, the distance between data items
needs to be defined. Depending on the data to be clustered, different distance metrics may
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Figure 2.12: Taxonomy of the clustering algorithms used in the context of this thesis. Dashed
lines indicate types of clustering algorithms not employed in the context of this research shown
here only for the purpose of completeness.

be more suited than others. Common distance functions used in the context of clustering of
scientific data include the Euclidean distance, City-block distance, as well as various derivatives
of the Pearson correlation coefficient. A detailed overview of the distance functions used in the
context of this research for clustering of 3D gene expression data is provided in [160] as well as
the manual of the clustering library Cluster 3.0 [59].

The next section first provides an overview of the most common clustering algorithms used
in this research effort (see Section 2.7.2.1). Section 2.7.2.2 afterwards provides an overview of
computational methods for cluster validation and estimation of the number of clusters k. This
introduction to data clustering concludes with a brief overview of applications of data cluster-
ing to gene expression data (see Section 2.7.2.3). Having introduced various data classification
algorithms that produce a single classification of the data (e.g., region-growing and clustering),
this chapter concludes with a description of ensembles, i.e., methods for integration of multiple
learned models (see Section 2.7.3).

2.7.2.1 Clustering Algorithms

Partitioning algorithms classify the data into a set of k clusters. In the case of clustering al-
gorithms like k-means, k-medians, and k-medoids, k is a user-defined input parameter. Other
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methods, such as mean shift clustering algorithms, determine the number of clusters automat-
ically during clustering [60, 61]. Self-organizing maps (SOMs) form a nonlinear projection of
high-dimensional data on a low-dimensional, regular topology but have also been used success-
fully for data partitioning [62, 63, 64]. In the context of SOMs, the topology of the target domain
(and in this way the structure of the neural network) needs to be defined (commonly a n×m

regular grid). Partitioning algorithms may produce hard clusters (e.g., k-means) or fuzzy cluster
(e.g., fuzzy c-means). As an example, the popular k-means clustering algorithm is described in
the following in more detail.

The k-means, k-medians, and k-medoids clustering algorithms define for each of the k clus-
ters a reference center. The different approaches differ only in the way the cluster centers are
defined. k-means clustering uses the mean data vector — i.e., the average value in each data
dimension over all data items of a cluster — as cluster center. Analogous, the k-median al-
gorithm employs the median data vector as cluster center. The k-medoid clustering algorithm
selects the data item with the smallest sum of distances to the other items in a cluster as cluster
center and is particularly useful in cases where a meaningful mean or median cannot be defined.
During clustering, data items are assigned to clusters such that the intra-cluster variance (i.e., the
mean-squared error) is minimized, i.e., the algorithm minimizes the sum of distances over the
data items to the corresponding cluster centers. In practice, k-means, k-median, and k-medoid
clustering are commonly implemented via an expectation-maximization (EM) algorithm. The
basic structure of the EM algorithm is as follows:

1) Create k clusters and assign data items randomly to them.
2) Recalculate the centers of the k clusters.
3) Determine for each data item the closest cluster center.
4) Reassign data items to the according clusters.
5) If any data item has been reassigned to a new cluster center

then go to step 2, otherwise stop. An alternative convergence
criteria could be defined as a minimum decrease in the mean
squared error.

The EM algorithm is iterative and stochastic, i.e., the algorithm may produce different clus-
ters each time it is executed depending on the initial random assignment of data items to clusters.
In practice, the algorithm is, therefore, often repeated several times to increase the likelyhood
that a close to optimal solution is found. The described EM algorithm is in practice relatively
stable assuming that the number of repeats is large enough.

Hierarchical clustering algorithms produce a nested series of partitions. Hierarchical cluster-
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ing results are commonly described via a so-called dendogram, i.e., a hierarchical tree. The root
of a complete dendogram represents the complete data and each leaf represents one data item.
Each inner node of the dendogram, hence, defines a cluster of a number of data items. In prac-
tice, binary tree representations — i.e., trees in which each regular node has exactly two children
— are most commonly used. The clustering hierarchy may be computed using agglomerative or
divisive approaches. Agglomerative clustering algorithms use a bottom-up approach to compute
a hierarchy of the data via subsequent merging of data items and clusters to define larger clusters.
Divisive clustering algorithms use a top-down approach, i.e., they compute the data-hierarchy via
subsequent splitting of the data into smaller clusters until all data items have been separated. In
the context of this thesis, only bottom-up clustering approaches are used. The basic algorithm
for bottom-up clustering can be described as follows:

1) Calculate the distance matrix. The distance matrix contains all
pairwise distances between all data items.

2) Place all data items to be clustered into the list L defining all
items to be merged.

3) Join the two nodes or items that are closest to each other.
4) Remove the nodes/items that have been merged from L .
5) Add the newly created node to L .
6) If L contains more than one element then go back to 3, else

stop.

The actual dendogram is created by retracing which items and nodes were merged by the
algorithm. The described hierarchical clustering algorithm is iterative and deterministic, i.e.,
given the same input conditions the algorithm produces the same result each time it is executed
(unlike the EM algorithm and SOMs described earlier). Depending on how the distances between
clusters are defined in terms of their members, different hierarchical clustering algorithms can be
defined, e.g.:

(i) Single linkage clustering defines the distance between two clusters as the shortest distance
between two members of the two clusters.

(ii) Complete linkage clustering defines the distance between two clusters as the distance be-
tween the two furthest members of the two clusters.

(iii) Average linkage clustering defines the distance between two clusters as the average over
all pairwise distances between the data items of the two clusters.

(iv) Centroid linkage clustering defines the distance between two clusters as the distance be-
tween the centroids of the two clusters. The centroid of a cluster is commonly defined as
the mean over all elements in the cluster.
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2.7.2.2 Cluster Validation

Validation of clustering results and evaluation of an optimal number of clusters k is an important
problem in data clustering. Validation of clustering results is often performed via investigation of
statistical properties of the produced clusters as well as manually by expert users. Computational
cluster validation techniques provide quantitative measures for cluster quality and promise to
enable more objective and accurate validation of clusters. A survey of computational cluster
validation techniques in the context for gene expression data analysis is provided by Handl et
al. [65]. Cluster evaluation functions are commonly subdivided in external and internal measures.

External evaluation measures compare the result of a single clustering with a known set of
unique as well as complete class labels (the so-called “gold standard” or “ground truth”). Based
on the gold standard one commonly evaluates the purity and completeness of a classification
result. The purity of a cluster is characterized by the fraction of data samples that were cor-
rectly assigned to the cluster, i.e., the fraction of the cluster taken up by the predominant class
label. Completeness of a cluster can be described via the fraction of data samples belonging
to the predominant class represented by the cluster that were actually assigned to the cluster.
Popular external cluster quality measures include the F -measure [66] and the Rand index [67].
The F -measure is based on the idea of precision and recall commonly used in information re-
trieval, whereas the Rand index is based on counting the number of pair-wise co-assignments
of data items. In case of the applications described in this thesis a gold standard is not known.
Consequently, external cluster evaluation functions cannot be considered in this research.

Internal evaluation measures do not rely on a gold standard but evaluate a clustering based on
the clustering result itself and the classified dataset. The most common internal cluster evaluation
measures consider the compactness, connectedness, and/or separation of a clustering. Common
measures for evaluation of the compactness of a cluster include the intra-cluster variance (i.e.,
the criterion optimized by the k-means algorithm) as well as average or maximum pairwise intra-
cluster distances. The connectivity of a cluster can be described, e.g., via measures that compute
for each data point of a cluster to which degree its n nearest neighbors have been placed into
the same cluster [65]. Measures describing the separation of clusters frequently define average
weighted inter-cluster distances, where the distance between two cluster is commonly defined as
the distance between cluster centroids or as the minimum distance between data items belonging
to a cluster (the single link criterion). Other common internal cluster quality measures, such as
the Dunn Index [68] or the Silhouette Width [69], combine cluster compactness and separation
criteria. The cluster quality measures described so far are general measures in the sense they do
not employ any specific knowledge about the underlying data.
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In the literature, several cluster quality measures specifically designed for the cluster analysis
of gene expression data have been proposed. The Figure Of Merit (FOM ) is an internal measure
for gene clustering proposed by Yeung et al. [70], extended by Datta and Datta [71], that employs
explicitly the redundancies and correlations often present in gene expression data. In the case
of clustering of cells in 3D gene expression data, the level of redundant information is generally
low. As a result, FOM and analysis techniques such as the overabundance analysis proposed
by Ben-Dor et al. [72] are often not appropriate for the gene expression clustering applications
described in this thesis but may be interesting when the cells of the embryo are to be classified
based on the information of a very large number of genes. To the best of the authors knowledge,
none of these existing cluster quality measures directly employ the fact that genes are expressed
in characteristic spatial patterns.

Internal cluster quality measures have also been used to estimate the number of clusters k in
a dataset. Estimation of an optimal k is usually done by computing a series of clustering results
for an increasing number of clusters k. If a clustering algorithm and internal evaluation measure
are adequate for the data to be classified, an optimal value of k can often be identified as a knee
(or elbow) of the resulting performance curve. Tibshirani et al. [73] introduced the gap statistic,
a statistical procedure that formalizes this heuristic. Milligan and Cooper performed a Monte
Carlo evaluation of thirty procedures for determining the number of clusters in a data set [74].
Existing cluster evaluation measures are designed to find a single “perfect” k. As shown later in
Section 4.4 and 4.4.2, when clustering cells in a 3D gene expression dataset, one typically finds
a series of valid values for k, rather than the one “perfect” k.

2.7.2.3 Applications of Data Clustering to Gene Expression Data

An overview of various methods for cluster analysis for gene expression data is provided by Jiang
et al. [75]. Gene expression data clustering can roughly be subdivided into three applications:

(i) clustering of genes to identify co-expressed genes indicating genes of similar function [76];

(ii) clustering of data samples to identify different phenotype structures of cells, e.g., Alizadeh
et al. employed clustering for identification of different tumor cell types [77]; and

(iii) biclustering, i.e., the clustering of genes and data samples at the same time to find sub-
groups of genes and data samples where highly similar activities are seen for the genes in
the subset of data samples [78, 79].

Clustering results are most commonly visualized using scatter-plots, plots of statistics, and
color table views with columns and/or rows sorted with respect to the clustering. The broad
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applicability of clustering to gene expression has led to the development of several commercial
and publicly available tools for clustering and visualization of gene expression data [80, 81, 82,
83, 84, 85]. However, these tools are limited to what essentially are one-dimensional analyses of
gene expression in homogenized populations of cells. They do not take account of spatial posi-
tion nor the complex relationship of expression across neighboring cells, and are consequently
not suitable for interactive visualization and exploration of 3D gene expression data as described
in this thesis (see Chapter 4).

2.7.3 Ensemble Methods for Data Classification

Methods that integrate multiple learned models into a single classification of the data are often
referred to as ensemble methods. In the context of data clustering, ensembles are commonly used
to improve the quality and robustness of traditional analysis methods.

According to Diettrich [86], combining multiple classifications improves the classification
because ensembles partely overcome three main problems of learning algorithms that output
only a single hypothesis, i.e, (i) the statistical problem, (ii) the computational problem, and (iii)
the representation problem. The statistical problem is a problem of insufficient training data re-
sulting in different hypotheses with similar accuracy and, hence, high variance of the algorithm.
A vote of all potentially good hypotheses increases the probability of choosing the best one.
The computational problem refers to the algorithmic problem that due the use of heuristics, a
classification algorithms may not be able to guarantee to find the best hypothesis, e.g., neural
networks or decision tree algorithms. Neural networks are also none-deterministic, i.e., given
the same input conditions the algorithm may produce different outputs each time it is executed.
Algorithms that suffer from the computational problem are sometimes also referred to as algo-
rithms with high computational variance. The representation problem describes the issue that the
search space of the algorithm may not contain any hypothesis that are good approximations to
the real problem. By defining a weighted combination of multiple hypothesis, a more accurate
approximation of the real problem may be possible. For example, a k-means clustering in com-
bination with Euclidean distance is known to produce only hyper-spherical clusters. As Fred and
Jain demonstrated, a k-means clustering ensemble can detect clusters of arbitrary shape [87].

Ensemble methods have a wide range of applications and are used in practice, e.g., for: (i)
knowledge reuse, i.e., several classifications are available which a user seeks to integrate into a
common classification; (ii) distributed data mining, e.g., in security sensitive applications where
original data cannot be shared between different participating parties, or to (iii) improve quality
and robustness of classifications [88]. In the field of pattern recognition, ensembles of different
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classifiers are used, e.g., to improve the quality and reliability of hand writing recognition [89].
In data clustering research, cluster ensembles help to improve the quality and robustness of tradi-
tional analysis methods, such as k-means [87], as well as to improve the robustness and stability
of instable classifiers, such as neural networks [90].

In this thesis, the basic principle of ensembles is used to enable accurate classification of
particle beams and high-performance analysis of extremely large 3D particle datasets. The beam
path analysis algorithm described in Section 5.6 first analyzes each timestep separately to detect
bunches of interest at each timestep and then merges the information of this ensemble of particle
bunch classifications to define a consolidated description of the data. Using this approach leads
to (i) increased performance of the analysis, (ii) improvement of the quality of initial analysis
results, and allows for (iii) effective data reduction enabling efficient analysis of the complete
timeseries.
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Chapter 3

Background: 3D Gene Expression and
Laser Wakefield Accelerator Simulation
Data

This chapter introduces the two main application areas discussed in this thesis, i.e., (i) analysis
of 3D gene expression data and (ii) analysis of laser wakefield particle accelerator simulations.
Section 3.1 discusses the relevant background in developmental biology and describes the 3D
gene expression data acquisition pipeline. Section 3.2 discusses the concept and simulation of
laser wakefield particle accelerators and concludes with an overview of related work in data
analysis in accelerator physics. The proposed novel frameworks for knowledge discovery from
3D gene expression data and laser wakefield particle accelerator simulations are discussed in
Chapter 4 and 5 respectively

3.1 Introduction to 3D Gene Expression

Animal embryos comprise dynamic 3D arrays of cells that express gene products in intricate
spatial and temporal patterns that determine the shape and form of the developing animal. The
goal of the Berkeley Drosophila Transcription Network Project (BDTNP) [91] is to decipher how
the patterns of gene expression underlying animal development are directed by the regulatory
information contained in DNA sequences. To achieve this goal, the BDTNP has chosen the
fruitfly Drosophila melanogaster as model organism. To date, studies of animal gene expression
have not captured 3D context with cellular resolution. The BDTNP has developed methods to
extract 3D PointCloud datasets from imaging data. PointCloud datasets provide for the first
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time information about the expression of genes with cellular resolution in three-dimensional
space for complete fruitfly embryos. These novel datasets promise to enable the systematic
characterization of the complex regulatory interactions and expression patterns already present
prior to gastrulation.

Section 3.1.1 introduces genetic regulatory networks and their role in the control of embryo
development. Section 3.1.2 describes the early development of Drosophila embryos. The regu-
lation of the embryonic development of Drosophila melanogaster is described in Section 3.1.3.
The development of Drosophila embryos and the required genetic fundamentals are highly com-
plex and in the following only a brief overview can be provided. For more detailed information
about the development of Drosophila Melanogaster see [92, 93]. Having introduced the essential
background in developmental biology, Section 3.1.4 afterwards describes the BDTNP’s pipeline
for image acquisition and generation of 3D PointCloud data.

3.1.1 Genetic Regulatory Networks and Embryo Development

All cells of living organisms contain deoxyribonucleic acid (DNA ), which encodes the genetic
information of the organism. Genes are functional subsequences of the DNA. Most genes code
for the amino acid sequences of proteins and additional cis-regulatory elements that help to
determine in which cells the gene’s product will be expressed.

Biosynthesis of proteins based on the information stored in genes is a fairly complex process
that can be divided into two main subprocess, i.e., transcription and translation. In the transcrip-
tion process the genetic information of a gene is copied by RNA-polymerase into a strand of
ribonucleic acid (RNA), the so called messenger RNA (mRNA). The main function of mRNA
is to transfer the genetic information of a gene from a chromosome to the ribosomes where the
translation process is performed. During translation, nucleic acids are paired by transfer RNA
(tRNA) molecules with amino acids. Finally a new strand of amino acids with a peptide back-
bone is build up which coils afterwards into a three-dimensional structure of minimal energy,
completing the creation of a new protein molecule. The term gene expression, hence, refers to
the amount of protein produced within a cell based on the genetic information of a gene.

An important class of protein coding genes are developmental regulatory transcription fac-
tors that function by binding to cis-regulatory sequences in many genes and direct their patterns
of gene expression. Via binding or reverse binding, these transcription factors can promote or
inhibit the expression of genes with the transcription factors themselves being proteins coded by
genes. Complex genetic regulatory networks are built up where cascades of differently expressed
transcription factors ultimately regulate all genes’ expression. These networks guide the devel-
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Gene A Gene B Gene C

Figure 3.1: Example genetic regulatory network.

opment of all living organisms with the characteristic spatial and temporal patterns of regulatory
transcription factors defining the body plan of the developing animal.

Simplified, genetic regulatory networks can be described by directed graphs in which genes
are interacting via messages (i.e., proteins) transferred between them. These protein messages
can either increase (+) or suppress (-) gene expression. The three main elements of genetic reg-
ulatory networks are linear interaction, positive feedback loops, and negative feedback loops.
Linear interactions simply define linear chains of gene interactions with no reverse effects. Feed-
back loops define more interesting elements of regulatory networks in which a gene is directly
or indirectly regulated by itself. Depending on whether the activity of a gene leads to self-
activation or self-inhibition, one in general distinguishes between positive feedback loops and
negative feedback loops, respectively. In practice, negative and positive feedback loops can be
distinguished simply via the number of negative interactions they contain. Positive feedback
loops contain an even and negative feedback loops an uneven number of negative interactions.
Positive and negative feedback-loops differ not only in their structure but more importantly in
their behavior. Negative feedback-loops tend to produce a balanced situation after some time.
Positive feedback-loops on the other hand can have multi-stationary states.

Figure 3.1 shows a simple example illustrating the main elements of genetic regulatory net-
works. A negative feedback-loop is constituted for gene B via direct product inhibition. For gene
A, a slightly more complex positive feedback-loop can be seen. Here gene A indirectly inhibits
its own inhibitor gene C by activating gene B which in turn inhibits gene C. As also illustrated
in Figure 3.1, one gene is in general affected by several different transcription factors, resulting
in highly complex, extremely dynamic systems of interacting feedback loops. The dynamics of
genetic regulatory networks are also affected by various other factors, such as the locations of the
genes on the chromosomes, physical and chemical properties of transcription factors, as well as
external factors like temperature and concentration of various chemical compound. The complex
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structure and dynamics of genetic regulatory networks make analysis and in particular prediction
of the behavior of regulatory networks under varying conditions a challenging task.

3.1.2 Early Embryonic Development of Drosophila melanogaster

The embryonic development of Drosophila melanogaster is subdivided into seventeen stages.
The different stages are defined based on important, easily distinguishable features of the embryo
formed during the development process. The research presented in this thesis focuses on the
analysis of Drosophila embryos at stage five of embryo development.

At the beginning, the egg itself includes mitochondria, ribosomes, storage material, proteina-
ceous yolk, and vesicles of lipid. In the Drosophila egg, nuclei divide and migrate in a common
cytoplasm instead of complete cleavage of the cells. During the first two hours, the embryo
is not defined by individual cells but forms a multinucleated mass of cytoplasm, also called a
syncytium. At this stage, proteins can spread freely within the egg, a fact that is utilized in early
pattern formation during which gradients of protein concentration provide positional information
within the embryo (see Section 3.1.3).

At the beginning of embryo development, the nuclei are roughly located in the center of the
embryo. During stage one and two of embryo development, the first seven cycles of nuclear
division take place. Zygotic nuclei divisions proceed synchronously within about every nine
minutes during this phase. After the fifth division, the nuclei start to move peripherally. With
the end of the eighth syncytial division, the majority of the zygotic nuclei are evenly arranged on
the outer surface of the embryo. Some nuclei drop out or stay at the center of the embryo, the
so-called yolk nuclei.

During stage three of embryo development, the ninth syncytial devision is performed. In this
stage, polar buds are formed around the nuclei located at the posterior pole of the embryo.

During stage four of embryo development — the syncytial blastoderm stage — the tenth to
thirteenth syncytial divisions of the blastoderm nuclei are performed. The second division of the
polar buds takes place during the tenth syncytial division. The buds pinch off afterwards and
form twelve to fourteen pole cells. The pole cells and blastoderm nuclei behave from then on
differently. The pole cells divide about twice as much and begin with protein synthesis early. This
behavior illustrates the first differentiation in the embryo. Stage four of embryo development is
completed with the onset of cellularization.

During stage five of embryo development — the blastoderm stage— the nuclei that have
migrated to the outer periphery of the egg form a monolayer of cells, the blastoderm. Introgres-
sion of membrane furrows separate single blastoderm nuclei to form separate cells, which all
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together build up the blastoderm. Blastoderm formation is a complex process and depending on
the progress of the formation of the ingrowing membrane, developmental stage five is usually
subdivided into several substages. While the plasma membrane extends centrically into the egg,
nuclei are not directly separated completely but for some time there are still channels between
the ascent cells and the yolk. These channels are large enough so that even large molecules,
like proteins, can pass through them. Interaction between the blastoderm nuclei is in this way
still directly possible. Molecules pass from one nucleus to others and act as a kind of signal
transmitters.

During the prolonged interphase between the beginning of blastoderm formation and com-
plete separation of the blastoderm cells, the body plan of the embryo is laid out in the blastoderm
cells, i.e., each cell of the blastoderm is assigned a defined role in the further development of the
fly. The function of a cell is thereby determined by which genes are expressed at which levels in
the cell. For the research presented in this thesis only the cells in the blastoderm are of interest,
a fact that is utilized in the visualization to create effective two- and three-dimensional model
representations of the embryo (see Section 4.2.1).

During developmental stage six and seven, a subset of ventral cells of the embryonic blastula
fold in to create a two-layered embryo. This process is also referred to as gastrulation. The inner
cell-layer forms during later development stages inner structures, like organs, in the embryo. Step
by step, the different parts of the new fruitfly are created in the following development stages.

3.1.3 Regulation of Embryo Development

The body-plan of a fly is defined through complex genetic regulatory networks that result in the
formation of complex spatial and temporal patterns of gene expression. The function of a cell is
determined based on which genes are expressed in it at which levels. Together, the patterns of a
large number genes ultimately control the fate of all cells. To be able to form the different parts
of a fly’s body in the proper places, some form of dynamic positional information that acts via
direct interaction with the genetic information of both, the egg and the sperm, is needed.

The mother sets up several systems of morphogen gradients in the egg, defining the main
axes of the egg. Morphogens are diffusible proteins located in special parts of the embryo where
the concentration of a morphogen is high at its source and decreases with increasing distance
from the source. The different morphogens act as transcription factors or translational repressors
(i.e., a protein that inhibits translation of a gene), regulating the expression of other genes. A
morphogen can have one main or several different target genes. Via complex genetic regulatory
networks, the expression of many different genes are affected either directly or indirectly by mor-
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Figure 3.2: Illustration of the hierarchy of segmentation genes.

phogens. Depending on the local concentration of morphogens, the elicited expression response
of genes may vary, resulting in the formation of complex spatial patterns of gene expression.
Via this complex mechanism, gradients of morphogen concentration function as positional in-
formation in the embryo. To control embryo-development, the Drosophila mother sets up four
morphogen gradient systems in the egg:

(i) an anteroposterior gradient of the bicoid protein,

(ii) a posterior system with nanos as the effective agent,

(iii) a terminal system that functions as the third determination of the anterior-posterior axis
and which induces the terminal parts of the embryo,

(iv) a dorsoventral system that determines the dorso-ventral axis.

As a direct response of zygotic genes to these morphogen gradients the, embryo gets subdi-
vided into segmental entities. During the first three hours of embryo development, the embryo
is subsequentially subdivided into smaller domains. Segmentation genes are responsible for the
correct development of the corresponding regions of the embryo and are expressed in complex
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spatial patterns. Genetic analysis have revealed a hierarchy of segmentation genes consisting of
four main steps (see Figure 3.2). Maternal genes, like bicoid and nanos, define the first level
of this gene-hierarchy and make up the described morphogen gradients. Afterwards, gab genes,
pair rule genes, and segment polarity genes are expressed. The expression of each class of genes
and, hence, the correct localization of the gene expression patterns is regulated by genes of the
previous class of genes as well as through cross regulation between members of the same gene
class.

Gab genes subdivide the embryo into broad domains. The pair rule genes further refine the
subdivision of the embryo based on the expression patterns of the gab genes. Pair rule genes are
expressed in patterns consisting of seven stripes. One can further distinguish between primary
pair rule genes —i.e, genes that translate the spatial information of maternal and gab genes into
the characteristic stripe patterns— and secondary pair rule genes, i.e., genes with a seven-stripe
pattern regulated by primary pair rule genes. Pair rule genes are only transiently expressed
and are responsible for activation of segment polarity genes. The segmentational information
is in this way transmitted form the pair rule genes to the segment polarity genes. At the onset
of gastrulation, segment polarity genes start to express in fourteen stripes. Segment polarity
genes stabilize and refine the striped pattern and are responsible for definition of the fourteen
parasegments of a Drosophila embryo. Gab and pair rule gene expressions fade away at the time
at which segment polarity genes adopt their functionality.

3.1.4 From Drosophila Embryos to 3D PointClouds

To provide a quantitative description of the complex patterns of gene expression in the early
Drosophila embryo, the BDTNP has developed a data processing pipeline for extracting precise
measurements of spatial gene expression patterns in three-dimensional space (see Figure 3.3).
Drosophila embryos are first fluorescently stained and imaged using two-photon microscopy
(see Section 3.1.4.1). Each image is segmented to extract information, such as nuclear positions
and volumes as well as expression values in the neighborhood of each nucleus for the chosen
genes [94] (see Section 3.1.4.2). The resulting Single PointCloud files contain information about
either protein or mRNA expression of the genes. A detailed description of the image acquisition
and segmentation process was provided by Luengo Hendriks et al. [94].

It is not practical to obtain the expression of more than a few genes in a single embryo, due
to the limited number of different distinguishable fluorophores as well as the difficulty in adding
multiple labels to embryos. To allow relationships between multiple transcription factors and
their target genes to be compared in a common coordinate framework, Single PointClouds are
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Figure 3.3: Data acquisition, processing, and visualization pipeline for 3D gene expression data.
Three-dimensional images, each containing a whole embryo, are transformed into Single Point-
Cloud files containing information about cell positions and the expression of the measured genes.
Multiple Single PointCloud files are registered to compute Virtual PointCloud files with infor-
mation about the expression of a larger number of genes. PointCloudXplore (PCX) is used for
visual analysis of Single as well as Virtual PointClouds. Arrow color indicates the type of data
transferred between the different parts of the pipeline with red being raw image data, light green
being Single PointClouds, and dark green being Virtual PointClouds.

registered to create Virtual PointClouds (also called Expression Atlases) describing the average
expression of many genes in a single virtual embryo model [161] (see Section 3.1.4.3). The
embryo registration process is described in detail in [161]

The visualization system PointCloudXplore (PCX) is used for visual analysis of Single as
well as Virtual PointClouds [157, 159] (see Section 4.2 for details). The following parts of this
section describe the different steps of the introduced processing pipeline, consisting of image ac-
quisition (see Section 3.1.4.1), image segmentation (see Section 3.1.4.2), and embryo registration
(see Section 3.1.4.3).

3.1.4.1 Image Acquisition

The image acquisition process can be divided into two main steps: (i) embryo preparation, and
(ii) imaging. The preparation of embryos for imaging consists of two main steps, called staining
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and mounting. In the staining process, appropriate fluorescent color markers are introduced in the
embryo in order to allow measurement of DNA, mRNA, and/or protein concentrations. Markers
are detectable, specific probes that attach with high selectivity to specific molecules in cells of
the embryo. In the mounting process, the embryo is fixated for the imaging process to avoid
imaging errors due to movement of the embryo and to ease focusing of the microscope on the
embryo.

After preparation, embryos are imaged using a Zeiss LSM 510 laser-scanning microscope.
For each embryo, a stack of 120 to 140 images is created. Each image contains one slice of the
embryo at a fixed z-axis position. Each image slice has a resolution of 1024×1204 pixels with
a pixel size of 0.45× 0.45× 1.5µm. Fluorescence intensities for the nuclear stain and labeled
gene products are separate values captured on a per pixel basis. A single image stack contains
one whole embryo and has a size of ≈ 0.5GB.

Figure 3.4 shows a set of example raw data images of a Drosophila embryo. Drosophila
melano-gaster embryos at stage five of embryo development are approximately 500µm long and
200µm wide and contain a monolayer of ≈5000 - 6000 tightly packed nuclei.

(a) (b)

Figure 3.4: a) Slices of raw Drosophila microscopy image data. b) Volume rendering of
Drosophila 3D microscopy image data with nuclei (white) and two genes (red and green)

3.1.4.2 Image Segmentation

The imaging data provides information about the expression of genes on a per-pixel basis. In the
second step of the BDNTP’s processing pipeline, 3D images — each containing a singel embryo
— are segmented to extract cell positions, cell and nuclear volumes, surface normals, and gene
expression data on a per-cell basis.

Three-dimensional imaging, in particular for high-throughput applications, is a complex task
resulting in several imaging problems that make image segmentation a challenging but now well-
solved task. Besides the tight packing of nuclei, the anisotropic resolution of the microscope is
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Figure 3.5: Visualization of segmentation results with segmented nuclei colored randomly. (Im-
age courtesy of Gunther H. Weber [97] )

problematic. Image resolution along the optical z-axis is about three times lower than in the
optical xy-plane. Penetration loss, yolk DNA, the pole cells, and the fact that DNA density is not
uniform across nuclei introduce additional complications.

Novel image segmentation and analysis algorithms were developed specifically tailored to
detect the monolayer of nuclei forming the Drosophila blastoderm [94]. Local maxima of the
smoothed Sytox image showing the total DNA are used as cell markers. Many nuclei contain
two markers instead of just one. A pruning algorithm is used to remove false cell candidates.
Using a watershed-based segmentation approach, the markers are extended to fill the nuclei and
the nuclei are extended to fill the cells. Together with the image segmentation, the expression of
the stained genes is quantified. Figure 3.5 shows a volume rendering of an example segmentation
mask with individual nuclei colored randomly. The segmentation process is described in detail
in [94].

The segmentation produces so-called Singel PointCloud files containing information about
the position, volume, surface normal, and expression values for each cell of a single embryo.
A Single PointCloud file (stored in ASCII format) requires only about 1MB of storage space
compared to ≈500MB for the raw image data (stored in binary format). The specification of the
file format for Single PointClouds is available from [95] (see also [96] for information about the
Virtual PointCloud file format).

3.1.4.3 Embryo Registration

Due to the limited number of different distinguishable fluorophores as well as the difficulty in
adding multiple labels to embryos, it is not practical to obtain the expression of more than a few
genes in a single embryo during imaging. To allow relationships between multiple transcription
factors and their target genes to be compared in a common coordinate framework, Single Point-
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Figure 3.6: Visualization of a three-dimensional virtual embryo model showing the expression
of four selected genes via color.

Clouds are registered into a Virtual Embryo using both morphology and a common reference
gene to determine cell correspondences [98][161].

Because the spatial expression patterns of genes change rapidly during stage five of embryo
development, the BDTNP defines the developmental stage of embryos based on invagination
of cell membranes and groups PointClouds into six temporal cohorts [94]. For temporal com-
parisons, different cohorts are matched using cellular flow fields that predict the positions of
individual cells at each time point [99][161]. This method enables BDTNP researchers to follow
gene expression levels within a particular cell over time using only data measured in fixed em-
bryos. Hence, each cell in the Virtual Embryo contains gene expression levels for each of the six
time steps. This cellular-level link between embryos of different ages makes it possible to study
the development of gene expression patterns over time, as well as to use an mRNA expression
pattern as an approximate substitute for a later protein expression pattern, when suitable protein
data is not yet available [161].

Embryo registration also greatly reduces the number of images needed to compare the expres-
sion of many genes. A comparion of the expression patterns of N genes based only on Single
PointClouds would require at least one hybridizations for each gene pair, i.e., O(N2) hybridiza-
tions. To create large scale models of thousands of genes, several million hybridizations would
be necessary. Registration of embryos makes it possible to construct such a complete picture
with only O(N) hybridizations.

The visualization system PointCloudXplore PCX is used for visualization of both, Single
and Virtual PointCloud datasets. Figure 3.6 shows an example visualization of a virtual embryo
model. The expression values of the genes even skipped (eve), fushi tarazu (ftz), giant (gt), and
tailless (tll) are shown via color. Similar to the staining during imaging, each gene is assigned a
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Figure 3.7: Screenshot of the online BDTNP 3D gene expression database.

basic color value with gene expression values shown via brightness of color. An introduction to
PCX is provided in Section 4.2.

The BDTNP has made its PointCloud database1 available to the public, enabling researchers
to efficiently search and access 3D gene expression datasets, i.e., Single as well as Virtual Point-
Clouds. Besides the PointCloud files themselves, researcher here have access to detailed in-
formation about how individual PointClouds were acquired and the information they contain.
For Single PointClouds, information is provided, e.g., about the species, genotype, phenotype,
and developmental stage of the imaged embryo, the stained genes and used markers, as well as
thumbnail images with a preview of the gene expression patterns, nuclear density, and image
orientation. For Virtual PointClouds, information about the PointClouds used in the registration
process, correspondence files, and a table with previews of all available expression patterns is
provided. Figure 3.7 shows a screenshot of the BDTNP’s 3D gene expression database. Via their
webpage the BDTNP has also made PCX available to the public free of charge.

1The BDTNP 3D gene expression database is available online at: http://bdtnp.lbl.gov/Fly-Net/
bioimaging.jsp
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3.2 Introduction to Laser Wakefield Particle Acceleration

This section describes the concept, simulation, and analysis of laser wakefield particle accelera-
tors (LWFAs). LWFAs are a special type of particle accelerator in which a laser pulse is used to
drive a wave in a plasma. Similar to a surfer who accelerates while riding a wave, particles can
become trapped in the plasma wave and accelerated to high energy levels.

Particle accelerators use electric fields to accelerate electrically charged particles (e.g., elec-
trons) to high speeds and contain them. A common cathode ray tube (CRT) television is an
example of a simple type of accelerator.

In science today, particle accelerators are among the most powerful devices enabling scien-
tific discovery. In fundamental science, particle accelerators are used to study the structure of
matter and continue to shape the scientific models of the universe. In the context of material
science and biology, terahertz and X-ray radiation produced via particle accelerators is used to,
e.g., decipher molecular structures. Other applications of particle accelerators include medical
imaging and radiotherapy. A recent report by the Office of High Energy Physics of the US De-
partment of Energy (DOE) [100] outlined the applications, challenges, and science opportunities
of high-energy physics in the next ten years. In its summary the report states: “Accelerators and
experiments at the Energy Frontier are expected to make major discoveries leading to an ultimate
understanding of the theory of particles and their interactions. They will address key questions
about the physical nature of the universe: the origin of particle masses, the existence of new
symmetries of nature, extra dimensions of space, and the nature of dark matter.”. This statement
illustrates the importance of particle accelerators in science discovery today.

Conventional accelerators use metallic cavities to shape radiofrequency electromagnetic waves
to produce accelerating fields. The maximum accelerating field that can be achieved using this
technology are limited in part due to electric breakdown of the metallic cavities. Therefore, with
the need to achieve ever higher energy levels, the size of conventional accelerators increases.
For example, using conventional accelerator technology a TeV-class electron-positron linear col-
lider requires accelerators at the length of about 20km. The world largest accelerator is the large
hadron collider (LHC) at CERN, the European Organization for Nuclear Research, near Geneva
at the border between France and Switzerland. The precise circumference of the LHC accelerator
measures 26,659 meter and is equipped with a total of 9300 magnets [101].

The following subsections provide an introduction to laser wakefield particle acceleration
(see Section 3.2.1) as well as the simulation of laser wakefield accelerators (see Section 3.2.2)
and the data produced by a simulation (see Section 3.2.3). Subsection 3.2.4 describes related
work on data analysis in LWFA physics. The proposed framework for knowledge discovery
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from laser wakefield particle acceleration simulation data is described in Chapter 5.

3.2.1 Plasma-based Acceleration

Plasma-based particle acceleration is a concept that promises to alleviate the “curse of size” (and
cost) of next-generation particle accelerators. Rather than metallic cavities and electro magnets,
plasma-based accelerators utilize an electric field generated by an electron plasma wave to ac-
celerate charged particles (e.g., electrons) to high energy levels. The concept of plasma-based
accelerators was first proposed by Tajima and Dawson in 1979 [102] and has since evolved
into an active field of research. LWFAs can easily achieve acceleration gradients of 10-100
GV m−1 [102, 103] allowing particles to be accelerated to high energy levels within short dis-
tances, e.g., 1 GeV particle beams were achieved using cm long plasmas [104, 105].

This work focuses on a specific type of plasma-based accelerator, the so-called laser wake-
field particle accelerator (LWFA). The basic concept of an LWFA is to use a short (. 100 f s),
ultrahigh intensity (& 1018W/cm2) laser pulse to drive waves in a plasma. When applied to a
hydrogen plasma the radiation pressure of an intense laser pulse displaces the electrons while
leaving the heavier ions stationary. Together with the space-charge restoring force of the ions,
this displacement drives a wave (wake) in the plasma. If the wake is high enough in amplitude
electrons can become trapped and accelerated by the plasma wave, and eventually decelerate
again as they outrun the wake. The electric and magnetic fields that can be achieved in an LWFA
are several thousand times stronger than in conventional accelerators [106] allowing particles to
be accelerated to high energy levels within very short distance. Figure 3.8 shows a snapshot of
an LWFA simulation illustrating the acceleration process.

In practice scientist distinguish between the LWFA and the self-modulated laser wakefield
accelerator (SMLWFA). The main difference between an LWFA and an SMLWFA is the ratio
between laser pulse length (Llaser) and the plasma wavelength (λp). In an SMLWFA Llaser is
larger than λp causing the laser pulse to undergo a self-modulation instability whereas in an
LWFA Llaser is usually smaller than λp. In case of the simulation data used in this thesis Llaser is
usually in the range of ≈ [0.5∗λp,1.5∗λp].

Alternative plasma-based accelerator concepts not considered in this research are the plasma
wakefield accelerator (PWFA) and the laser beat-wave accelerator (LBWFA). A PWFA uses
an electron beam rather than a laser pulse to drive the plasma wave(s). A LBWFA uses two
long pulse laser beams with different frequencies to resonantly excite the plasma wave. As an
extension to the LWFA and PWFA concept, multiple pulses (laser or electron pulses) have been
used to enhance the wakefield amplitude. An overview of the different concepts for plasma-based
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Figure 3.8: Volume rendering of the plasma density illustrating the three-dimensional structure
of the wake (blue). A set of particles trapped in the wake that are accelerated to high energy levels
(px > 5∗1010) are shown in addition in green/yellow with green being medium and yellow being
high momentum in x direction px. Contours (red) of the electric field strength in z direction (Ez)
illustrate the laser pulse (which moves along the x axis from left to right). The panel at the back
and bottom show a slice through the center of the volume in x/y direction (at z = 0) and x/z
direction (at y = 0) respectively. The inset views show close-ups of the two main bunches of
accelerated particles.
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acceleration is provided in a survey by Esarey et al. [103].

While LWFAs can easily achieve high acceleration gradients, the electron beams produced
by LWFAs were for a long time of low quality, i.e., relatively low energy levels <200MeV with
100% energy spread [107]. Controlling the acceleration process is a challenging task due to the
complex interactions between the laser pulse and the plasma and vice versa, i.e., the laser pulse
and the plasma evolve together. It was not until recently in 2004 that three different groups were
independently able to obtain percent-level energy spread 70-200MeV beams using intense laser
pulses applied to millimeter-scale gas jets [108, 109, 110]. One method to achieve such high-
quality bunches is through plasma channel guiding in which a preformed plasma channel —
similar to an optical wire — guides the laser beam through the plasma [108]. Using this method,
researchers at the LOASIS [111] program have demonstrated high-quality electron beams at
1GeV using cm long plasmas [104, 105]. Recently, Geddes et al. [112] described the use of
plasma density gradients to control wake phase velocity and particle trapping in LWFAs demon-
strating stable, low-momentum-spread bunches that would be suitable for use as an injector.

Analysis, understanding, and control of the complex physical processes of plasma-based
particle acceleration is a challenging task and requires understanding of how particles become
trapped and how the particle beams are formed and accelerated. These processes are best un-
derstood by tracing the particles that form a beam over time and investigate their temporal evo-
lution [106, 113]. In real-world experiments it is, however, impossible to record the complete
evolution of an experiment and much less to trace single particles within a plasma. Simulation
of LWFA experiments is, hence, essential for the understanding of the acceleration process.

3.2.2 Simulation

To better understand nonlinear plasma response, beam trapping, self-consistent laser propaga-
tion, and beam acceleration — processes not accessible to analytic theory — LWFA experiments
are computationally modeled. Simulation of LWFAs is essential for the understanding of the
fundamental physics of plasma-based acceleration, understanding of processes and results ob-
served in experiments, as well as for improvement of experiments. Simulation is also becoming
increasingly important for planning of experiments and testing of new accelerator models. In
the past, large-scale one-to-one simulations, benchmarked to experiments, enabled scientists to
study and understand the physics of formation of narrow energy spread particle bunches from
self-trapping at 0.1GeV and 1GeV [114]. Today, simulation is used for development of new
accelerators involving, e.g., controlled injection to increase beam quality [115].

Traditionally, explicit particle-in-cell (PIC) simulations are used to model LWFA experi-
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ments [116]. PIC simulations — using, e.g., VORPAL [117], OSIRIS [118] and others simu-
lation codes [119] — self-consistently include fields and interactions of the laser, plasma, and
bunch. This is important in the case of plasma-based accelerators because the laser pulse is
simultaneously shaped by its interactions with the plasma as it drives the wake, i.e., both, the
laser and the plasma, evolve together while in this process a large portion of the laser energy
is transferred into the plasma. Balancing this process is the basis for the formation of a stable
accelerating structure.

This work concentrates on datasets produced by VORPAL [117]2, a parallel, object-oriented
plasma simulation code, which can model the behavior of charged particles in their self-consistent
electromagnetic field. Both, the particle motion as well as the field evolution, can be modeled
with various approximations, ranging from fluids to fully kinetic particles, or from an explicit
electromagnetic to an electrostatic treatment of the field equations. The code has been success-
fully used across a number of disciplines within DOE’s Office of Science, including ultra-high
gradient laser-plasma acceleration of electron beams, electron cooling of heavy ion beams, and
implicit electromagnetic treatment of plasma edge phenomena in tokamak plasmas.

When modeling LWFAs, VORPAL is typically used as PIC code (see Figure 3.9). In this
method, collections of real charged particles are modeled as computational macro-particles that
can be located anywhere in the computational domain. Each macro-particle represents a set of
real particles while the weight of each macro-particle indicates the number of particles it repre-
sents. The electromagnetic field is spatially discretized via a regular grid. Particles are moved un-
der via Newton-Lorentz force obtained through interpolation from the fields. The current carried
by the moving particles is then deposited onto the simulation-grid to solve Maxwell’s equations
for the fields. VORPAL’s design enables simulations to be run in multiple spatial dimensions,
ranging from 1D to 3D. The large computational cost of 3D simulations requires thorough stud-
ies in 2D prior to a full 3D run. Being able to run the same code base with the same input
configuration enables to run much more efficiently. With increasing level of parallelism used in
simulations, efficient I/O becomes a major challenge. VORPAL uses parallel HDF5 [120] for
I/O operations utilizing SUN’s LUSTRE parallel file system installed at NERSC3.

In order to accurately model an LWFA the simulation needs to resolve the laser wavelength
(λlaser; usually in the order of µ-meters) over the length of the accelerator (Laccel; usually in the

2VORPAL = Versatile Plasma Simulation Code; VORPAL is a software for performing relativistic, hybrid
plasma and beam simulation developed by the Tech-X corporation (see online at: http://www.txcorp.
com/).VORPAL is used by researchers from the LOASIS [111] program to simulate laser wakefield particle ac-
celerators.

3NERSC = National Energy Research Scientific Computing Center; NERSC is a scientific computing facility
for the Office of Science in the U.S. Department of Energy.
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Figure 3.9: Particle-in-cell (PIC) simulation of a laser wakefield particle accelerator with the
plasma density shown in lilac/blue and the laser shown in yellow/red. The inset plot shows a
close-up view of the computational grid that resolves the laser period (yellow) and the plasma
particles (blue). (Image courtesy of Cameron G. R. Geddes)

order of millimeters to centimeters and soon meters), i.e., the resolution of the simulation grid in
longitudinal direction (x) must resolve λlaser. In transverse direction (y and z) the grid-resolution
must be high enough to resolve the structure of the plasma wave. Furthermore, each gird-cell
should contain a sufficient amount of particles to avoid large numerical errors, i.e., the number
of simulated particles should at least be equal to the number of cells of the simulation grid or
larger.

In order to accurately model todays experiments via PIC simulations, researchers, therefore,
use up to hundreds of millions of particles as well as grid-cells (e.g., 4000 ∗ 3002 grid-cells per
timestep in a moving window simulation, see details below) and a million timesteps. On current
supercomputers, such a LWFA simulation requires hundreds of of processor hours using more
than 10,000 processors. Even such high-resolution simulations are only an approximation. A real
plasma contains hundreds of trillions of particles (rather than millions of macro-particles) and
LWFAs produce X-ray radiation and other fields with wavelengths unresolved by current sim-
ulations. The requirements for simulation of meter-scale 10 GeV experiments are even stricter
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to ensure that laser pulse velocity at low density and beam quality for applications are resolved
accurately. In combination with the increased length and width of the accelerator, these stricter
requirements are expected to make simulation of next-generation LWFAs at least three to four
orders of magnitude more costly than current experiments.

Due to the large computational resources required to accurately model a LWFA, it is not prac-
tical to simulate the entire cavity containing the hydrogen plasma at once. To save computational
resources and storage space, VORPAL employs a moving window simulation approach. In this
method, only a region around the laser pulse is simulated at each time step. As the laser pulse
is traveling through the plasma the simulation window is moved along the cavity, i.e., the laser
pulse is centered within the simulation window. Furthermore, due to the large amount of data
produced per simulation timestep only a subset of all timesteps are actually saved to disk.

3.2.3 Data Overview

VORPAL uses two different kinds of output, one for storing snapshots of the entire simula-
tion state at a particular point in time (“dumps”) and the other being time histories of selected
quantities. The dump data is both used for extracting simulation results, as well as for check-
point/restarting operations often required in a timeshared environment. Dumps consist of field
data, particle data and auxiliary state data, all written according to Vizschema [121], a self-
describing data organization scheme for scientific data, designed to facilitate the visualization of
its contained data.

The field data is defined on a computational grid. For each timestep separate datafiles are
created for the electric field (with EX , EY , EZ) the magnetic field (with BX , BY , BZ), and plasma
related variables such as density (Sum rhoJ, JX , JY , JZ). Together, the field data forms a collec-
tion of scalar and vector variables describing the state of the plasma at a given time. From this
data also information about the location and intensity of the laser pulse can be derived.

The analysis discussed in this thesis focuses mainly on the particle data. In contrast to the
field data, the particle data is scattered data. For each timestep a separate particle datafile is writ-
ten to disk describing the current state, i.e., location and momentum, of the macro-particles. Each
macro-particle is represented as a vector of seven quantities, in the 2D case (x,y, px, py, pz, id,wt)
and eight in the 3D case (including z). The quantities x, y, and z are measured in meter (m) and de-
scribe the physical location of a particle. px, py, and pz are in m

s (γv) and describe the momentum
of a particle in x, y, and z direction respectively. wt describes the weight of each macro-particle
defined by the number of electrons it represents. id is a unique identifier for each particle.

As a derived quantity, xrel(t) = x(t)−max(x(t))+xslippage is used in the analysis to describe
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the relative particle position in x direction within the simulation window. In the plasma the
laser velocity vlaser is smaller than the speed of light c so that the laser pulse slips back in the
simulation window which moves at c. The term xslippage = t ∗ 0.155µm in the definition of xrel

corrects for the resulting slippage of particles over the course of the simulation for the parameters
used here.

Due to the large amount of data stored per dump, scientists have to find a compromise be-
tween data storage limits and accuracy of the analysis, e.g., to be able to reconstruct meaningful
particle trajectories from the stored data. In contrast to the actual simulation, the temporal res-
olution of the stored data may, therefore, be insufficient to accurately resolve wave frequencies
but is selected to be sufficient to resolve bunching and dephasing of particle beams.

The size of LWFA simulations datasets varies between several gigabyte (GB) in the 2D case
and usually several terabytes (TB) in the case of 3D simulations. The amount of data created by a
single simulation run depends on various user-defined parameters, e.g., (i) the spatial resolution
of the simulation (i.e., number of particles per cell and resolution of the simulation-grid), (ii)
the temporal resolution of the data (i.e., how many of the simulated timesteps are written to
file), and (iii) the size of the simulation window (i.e., the area around the laser pulse captured
by the simulation). With increasing performance of supercomputers and decreasing cost for
storing simulation results, researchers are able to perform more accurate simulations with higher
temporal and spatial resolution. The size of simulation datasets is, therefore, expected to increase
even further in the future. With decreasing simulation cost also the number of simulations a
researcher can perform increases, resulting in the creation of ever larger databases of simulation
data.

To achieve good performance, data analysis procedures often employ dedicated data reduc-
tion methods and/or focus on specific features of the data. In the case of LWFA simulation
data only a fraction of all particles are accelerated to relevant energy levels and an even smaller
number of particles are actually part of the particle beam(s) of interest. Being able to efficiently
access the relevant data subsets is crucial to enable high-performance analysis.

To enable efficient identification and access of data subsets, the analysis methods described in
this work make use of state-of-the-art data management using FastBit [51] (see also Section 2.6).
The particle data is converted to H5Part and augmented with FastBit bitmap indices. To enable
efficient access to the data, this work makes use of HDF5-FastQuery [122]; a data access API
based on HDF5 [120]4, H5Part [123, 124]5 and FastBit [51].

4HDF5 (Hierarchical Data Format); is a self-describing machine-independent binary file format.
5H5Part is a data storage schema and API build on top of HDF5 with the goal to define a common file storage

format. The goal of H5Part is to enable stable visualization and data analysis environments and interoperability
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3.2.4 Data Analysis in Laser Wakefield Accelerator Physics

Knowledge discovery from large, complex simulation data is a challenging task. Visualization
and statistical analysis are common tools to address this problem. A large number of analysis
frameworks are available for this purpose, e.g., ROOT [125], PAW [126], AIDA [127], R [128]
, IDL [129] OpenDX [130], VorpalView [131], ParaView [36], and VisIt [34]. While analysis
based on statistics and visualization has proven very useful most of the available analysis are
based on static views of the data. Animation of static plots is commonly used for investigation of
the temporal evolution of the data. This type of analysis is, however, static in the sense that the
user usually has no or only limited ability of dynamic interaction with the visualization. While
visualization systems, such as VisIt and ParaView, support dedicated data selection mechanisms,
their ability to define data queries interactively for extremely large particle accelerator simu-
lations is limited. Also, none of the above mentioned tools addresses the specific problem of
automatic analysis of particle beams in LWFA simulations.

Fonseca et al. [132] described recently a framework for particle tracing in the context of
LWFA simulation based on the OSIRIS [118] framework. The size of the data prohibits saving
the complete information of every simulated time step. To get high-quality particle traces they,
therefore, execute the simulation twice. After the first simulation run a researcher manually de-
fines the particle subset of interest and then re-executes the simulation to gather the data of the
selected particle subset at a higher temporal resolution. Selection of the particles of interest is
execute manually by selecting, e.g., the n most energetic particles at the last time step. Mar-
tins et al. applied these methods to investigate the ion dynamics and acceleration in relativistic
shocks [133]. Analysis based on serial particle tracing procedures was also described by Tsung
et al. [113] and Cameron Geddes [106]. In contrast to the efforts of Fonseca et al. and Martins
et al. this work focuses on how to efficiently trace particles in a large collection of data and the
automatic classification of particle bunches based on particle paths.

Recently methods for automating different parts of the data analysis process have received
attention. Bagherjeiran et al. [134] presented a comprehensive report on applying graph-based
techniques for orbit classification in plasma simulations. This approach targets the system dy-
namics in particle accelerator data in terms of particle orbits but does not address particle dynam-
ics as a function of time or inspection of particle bunches. Love et al. [135] conducted an image
space analysis of coherent structures in plasma simulations using a number of segmentation and
region-growing techniques to isolate regions of interest in orbit plots. Hlı́na et al. [136] stud-
ied dynamic patterns and their velocities in thermal plasma jets via substraction and correlation

across project’s software infrastructures.
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analysis of succeeding images in a time series of CCD images recording the plasma-radiation.
In contrast to the work presented in this thesis, Hlı́na et al. and Love et al. focus on structures of
the plasma itself rather than the dynamics and behavior of individual or groups of particles.
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Chapter 4

Visualization and Analysis of 3D Gene
Expression Data

The recent development of methods for extracting precise measurements of spatial gene expres-
sion patterns from three-dimensional (3D) image data opens the way for new analyses of the
complex gene regulatory networks controlling animal development. An integrated visualization
and analysis framework is presented that supports user-guided data clustering to aid exploration
of these new complex datasets. The interplay of data visualization and clustering-based data clas-
sification leads to improved visualization and enables a more detailed analysis than previously
possible.

An interface between the visualization and MATLAB R©1 is introduced to enable bioinformat-
ics researcher to more easily integrate their analysis with the visualization. Using this interface
advanced analysis algorithms can be easily integrated with the visualization and made readily
accessible for the target user.

As novel scientific contributions of this work this chapter discusses the:

(i) integration of data clustering and visualization into one framework;

(ii) application of data clustering to 3D gene expression data;

(iii) evaluation of the number of clusters k in the context of 3D gene expression clustering;

(iv) improvement of overall analysis quality via dedicated post-processing of clustering results
based on visualization;

(v) integration of the visualization system PointCloudXplore (PCX) with MATLAB; and
1MATLAB is a registered trademark of The MathWorks Inc., 3 Apple Hill Drive Natick, MA 01760-2098, USA.

Online at: http://www.mathworks.com/
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(vi) as specific applications, the use of the proposed framework to: (a) objectively define spatial
boundaries of gene expression patterns, (b) characterize the temporal variation of genes,
and (c) to analyze how mRNA patterns are controlled by their regulatory transcription
factors.

4.1 Problem

Understanding the control of embryo development is a fundamental question in biology. A cell’s
unique fate is determined by specific combinations of developmental regulatory factors that form
part of complex genetic regulatory networks ultimately coordinating the expression of all genes.
As a result, the developing embryo exhibits an extraordinarily complex set of spatial and temporal
gene expression patterns. The basic structure of the genetic regulatory network is defined by the
genome sequence. However, it is currently not possible adequately decipher this information or
correctly predict how patterns of gene expression evolve.

The Berkeley Drosophila Transcription Network Project (BDNTP) is generating multiple
complementary datasets to address these challenges using the early Drosophila developmental
regulatory network as a model. These data sets include in vitro and in vivo DNA binding data for
key transcriptional regulators and, of particular relevance to this work, 3D gene expression data
that describes the spatial output of the network at cellular resolution for multiple time points [91,
94].

Many relevant questions can be addressed using these new 3D gene expression datasets [94,
99]. For some analyses, such as logic-based network models, it is helpful to have an objective
description of the pattern of a gene at a particular time point, i.e., to define which cells do or
do not express a gene. Analysis of the temporal dynamics of gene expression, i.e., how patterns
change over time, is essential for gaining a deeper understanding of complex network inter-
relationships. Knowledge of the input and output of a network, i.e., the response of the gene
expression network at time t = ti+1 to the input of the expression levels of regulators at time
t = ti, is paramount to identifying regulatory interactions.

To address these and other challenges, a flexible visualization and analysis tool that allows for
interactive exploration of the data is needed. Since drosophila melanogaster has been used as a
model for genetic research for decades, there exists a large accumulated body of knowledge about
it. A tool designed for the analysis of 3D gene expression data must therefore allow researchers
to incorporate this existing knowledge in the analysis, for example by providing ways to modify
analysis results, and thus the visualization, accordingly. The tool must also capture the biological
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context of the embryo and allow different subsets of the data (cells or gene expression patterns)
to be examined.

The work described in this chapter is based on the 3D gene expression visualization frame-
work PointCloudXplore (PCX). Section 4.2 introduces PCX and describes its many features.
Afterwards, Section 4.3 provides an overview of the proposed framework for knowledge discov-
ery from 3D gene expression data based on the integration of data clustering (Section 4.4 and 4.5)
and MATLAB (see Section 4.6) with PCX. This chapter concludes with a presentation of results
and applications of the proposed analysis framework (see Section 4.7).

4.2 State of the Art: Visual Analysis of 3D Gene Expression
Data

PointCloudXplore (PCX)2 is a visualization system specifically developed for the analysis of
3D gene expression data [157, 159][137]. PCX is the standard visual analysis software of the
BDTNP and integrates physical and abstract data views in a common framework using the estab-
lished concept of brushing and linking (see Section 2.3). In the context of PCX the, with respect
to the application, more intuitive term cell selection is used instead of brushing. Accordingly
a brush —i.e., an entity used for cell selection— is referred to as cell selector. Physical views
use a model of the embryo to visualize spatial gene expression patterns (see Section 4.2.1). In
abstract views, physical cell positions are ignored and expression levels for multiple genes are
plotted with respect to each other using scatter plots or parallel coordinates (see Section 4.2.2).

The different physical and abstract views PCX supports are useful in their own right and
can be used individually to mine data sets for new information. However, it is often desirable
to correlate information shown in different views. Selecting cells of interest can be executed in
any view in PCX, while depending on the view, different data properties are employed in the
select process. User-defined cell selections are then stored and managed in a central cell selector
management system (see Section 4.2.3). Since all views have access to the same set of cell
selectors, features of interest can be defined in any one view and then further analyzed in any
other view. The most common way to visualize cell selectors in PCX is to use a consistent color
mapping. Depending on the current view, additional functions for highlighting cell selectors are
available, such as cell selector-bands in 2D parallel coordinates.

Figure 4.1 shows a snapshot of the GUI of PCX. The main window is split into two main

2PointCloudXplore is online available at: http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp?w=
pcx
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Figure 4.1: Main user interface of PointCloudXplore showing a physical view of the embryo
(left) and scatter plot view (right). Both views show the genes eve (red) and ftz (blue) at stage
5:26-50% of embryo development as well as an user-defined cell selection (yellow).

areas: The left part contains all physical views of the embryo (e.g., a Cell View in Figure 4.1)
and the right part all abstract views (e.g., a scatter plot in Figure 4.1) as well as additional user
controls such as the cell selector management. These two parts of the window can be resized
within the main window by moving a central split bar, allowing the physical- or abstract views to
occupy as much screen space as desired by a user. Controls and abstract views in the right part
are arranged in a series of detachable tabs such that a user can switch between different abstract
views or detach them from the main window and show them side-by-side.

4.2.1 Physical Views

Physical views use a 3D embryo model, or different 2D projections of this 3D model, to convey
a sense of the spatial distribution of gene expression on the blastoderm. There are three physical
views in PointCloudXplore (PCX): (i) 3D Views (see Section 4.2.1.1), (ii) Orthographic View,
and (iii) Unrolled View (see Section 4.2.1.2). Each view has its strengths and weaknesses in
presenting aspects of gene expression patterns. The 3D Views provide the most spatially flex-
ible representation of the embryo. Orthographic Views simulate the 2D views of embryos that
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most biologists are used to. Finally, the Unrolled View shows a 2D map of all blastoderm cells
providing an overview of the expression in the entire embryo.

All physical views use color intensity to show expression levels analogous to the way staining
was used to reveal gene expression levels in the original embryo. Color is also used to display
cell selections, i.e., to highlight which cells are selected by a set of user defined cell selectors.

In physical views, selection is performed by painting patterns on the embryo. In this process
the user subsequently adds or removes cells from a cell selector by drawing over the cells of
interest using the mouse-cursor.

In the 2D views the third dimension is freed-up and can be used for visualization of expres-
sion values. Using so call expression surfaces (see Section 4.2.1.3) the user can analyze gene
expression pattern in much more detail than possible when just using color. For more details
about physical views see also [157, 159, 162] and [137].

4.2.1.1 Three-dimensional Embryo Views

PointCloudXplore’s 3D Embryo Views utilize a 3D model of the embryo, which a user can
rotate, pan, and scale to obtain an overview of the entire embryo (Figure 4.2 left). Cells can be
represented in three ways in the 3D Views: i) as spherical cells in the so called Sphere View (not
shown), ii) as points in the approximated Delauny triangulation of the blastoderm surface in the
so called Smooth View (not shown), or as polygonal cells in the so called Cell View (see 4.1 left
or 4.2 left). In the following the Cell View is used as standard 3D visualization of the embryo.

In the Cell View, a surface composed of polygonal faces, each of which corresponds to a de-
tected nucleus, represents the embryo. These polygons form an approximate Voronoi tessellation
of the blastoderm surface and have a visual appearance similar to that of cells. The blastoderm
surface is assumed to be a two-manifold (i.e., a locally flat surface) and polygon size depends on
the distribution of cells on the embryo blastoderm.

4.2.1.2 Two-dimensional Embryo Views

The different 2D embryo views are projections of the Cell View. Using these 2D projections a
user can gain an overview of all cells of the embryo without the need for rotation.

Traditionally, biologists have studied expression patterns from photomicrographic images
from defined views, e.g., ventral, dorsal, or lateral view, of the embryo. Orthographic Views
simulate these familiar views by splitting the embryo along a body axes and then projecting the
halves orthographically (not shown here).
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Figure 4.2: The Unrolled View uses cylindrical projection to map the entire embryo to a plane.

While Orthographic Views provide an overview of the entire embryo the resulting views are
split into two sub-views and information at the edges of the projection is compressed. To alleviate
these shortcomings, the Unrolled View maps the entire Drosophila embryo continuously to a
plane using cylindrical projection [94], [157, 159, 162] (see Figure 4.2). Even though the 2D
cylindrical projection distorts spatial relationships (especially in the termini), the Unrolled View
provides and overview of all cells of the embryo. In the following the Unrolled View is used as
standard 2D view of the embryo.

4.2.1.3 Expression Surfaces

Projecting the embryo to a plane has the advantage of freeing the z dimension up for displaying
additional information. In PointCloudXplore (PCX), the free z dimension can be used to display
gene expression values as surface plots, termed Gene Expression Surfaces [157], that support
simpler quantitative analysis of gene expression data. Individual Expression Surfaces display
data for one gene over either the Orthographic or the Unrolled Views. The xy-positions of Ex-
pression Surface points are determined by the positions of cells in the underlying view, whereas
the height of an Expression Surface is determined by the expression values measured for the gene
it represents.

Figure 4.3(a) shows the quantitative expression levels of the mRNA expression pattern of the
transcription factor eve demonstrating how its expression level change along the anterior/posterior
(A/P) as well as dorsal/ventral (D/V) axis. Multiple surfaces allow users to compare the quantita-
tive relationship between genes. Figure 4.3(b), e.g., shows the quantitative relationship between
the mRNA expression patterns of the transcription factors ftz (green) and eve (orange) illustrat-
ing that these genes do not only exhibit excluding alternating patterns along the A/P body axis
but also differ in their variation along the D/V-axis [94].
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Figure 4.3: a) Surface showing the quantitative gene expression levels for eve (orange). b) An
additional surface shows expressions levels for ftz (green). The direction of the anterior/posterior
(AP) axis and the dorsal/ventral (DV) circumference are indicated.

4.2.2 Abstract Views

To explore relationships between gene expression’s independently of their spatial context, Point-
CloudXplore (PCX) uses information visualization techniques in gene expression space. This is
particularly useful for characterizing regulatory relationships between genes. PCX supports three
main abstract views: i) scatter plots (see Section 4.2.2.1), ii) Cell Magnifier (see Section 4.2.2.2),
and iii) parallel coordinates (see Section 4.2.2.3).

4.2.2.1 Scatter Plots

Scatter plots are conceptually the simplest way to visualize relationships in gene expression
space (see Figure 4.1 right). Three genes are selected and mapped to the three axes of a Carte-
sian coordinate system where each axis represents one gene’s expression level ranging from no
expression at the origin to maximum relative expression. Each cell in the embryo is represented
by a single point in the 3D scatter plot where the point’s location is specified based on the relative
gene expression levels of the according cell. The user can select cells of interest within a scatter
plot by moving and resizing an axis aligned box within the plot. In PointCloudXplore (PCX) a
3D scatter plot is augmented with a set of 2D Scatter Plots that show expression relationships
between the three possible pairs of genes in the 3D plot. The 2D plots provide a standard view
on the data and facilitate cell selection (see Figure 4.1 right).
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4.2.2.2 Cell Magnifier

Unlike the other physical and abstract Views available in PointCloudXplore (PCX), the Cell
Magnifier (see Figure4.4, center panel) concentrates not on comparing gene expression values in
different cells but on comparing expression values in just one cell. Gene expression values are
visualized using a bar graph with one bar for each gene, colored according to the user defined
stain colors. Since exact expression values can only be roughly estimated from bar size, the exact
measured gene expression value is also displayed beside each bar. The cell to be displayed in the
Cell Magnifier can be selected in any physical view and is highlighted by graying it out (arrowed
in Figure 4.4, left panel).

To ease selection of regions in physical space with specific expression properties, PCX pro-
vides Seed Cell Selection, which uses the cell selected using the Cell Magnifier as seed point (see
Figure 4.4). In addition to the seed cell the user specifies in the Cell Magnifier a set of expression
levels that should be considered in defining the region of the embryo. Seed Cell Selection then
uses a flood fill method [138] to identify all cells in a contiguous region whose expression levels
lie within the specified expression range(s) (see Figure 4.4).

Figure 4.4: Using the Cell Magnifier and Seed Cell Selection to select all cells of a ftz stripe.

4.2.2.3 Parallel Coordinates

PointCloudXplore (PCX) uses parallel coordinates to facilitate the visualization of relationships
between many genes’ expression. Using two sliders attached to each parallel axis a user can
define cells of interest in parallel coordinates via multi-dimensional thresholding. To effectively
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display cell selections in parallel coordinates, PCX provides several extensions to standard par-
allel coordinates such as Cell Selector Bands (see Figure 4.5a).

PCX employs 3D parallel coordinates to reveal also spatial relationships between gene ex-
pression patterns in parallel coordinates. In 3D parallel coordinates the coordinate axes are
extruded into the third dimension so that each axis effectively defines a 2D scatter plot (see
Figure 4.5b). Data lines are ordered along the third dimension from back-to-front according to
either: i) cell positions along the AP axis or the DV circumference, or ii) the expression of a
selected gene. Along any given data line, the positional information is constant, such that data
lines do not intersect each other in this third dimension. For a detailed description of PCX and
parallel coordinates see [157] and [137].

gt
Kr

hb
hb

hb hb
gt hb

Kr

Connect Connect 
corresponding corresponding 
pointspoints

Series of 2D Scatter­Plots 3D Parallel Coordinates

hba) b)

Figure 4.5: a) Parallel coordinates visualization of three cell selectors using cell selector bands
and average curve lines. b) Illustration of 3D parallel coordinates.

4.2.3 Cell Selector Management

All views available in PointCloudXplore (PCX) are linked via a central cell selector management
system. Cell selectors of any kind can be accessed here in a unified way and common cell selector
properties, such as color, can be defined. To support dedicated selection mechanisms for different
views PCX provides a set of different cell selectors: i) DATA cell selectors, used in scatter plots,
ii) POSITION cell selectors, used in the physicale views as well as for Seed Cell Selection, and
iii) PATTERN cell selectors, used in parallel coordinates. All cell selector types are derived from
a common base class so that all cell selectors can be displayed in any view.

The central cell selector management allows one not only to perform basic management
operations, but also supports combining cell selectors using logic operations, such as, AND,
OR, and NOT. Thus, for example, cell selectors defined in a scatter plot can be combined with
cell selectors defined by drawing on the embryo or via seed cell selection, making it possible
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to define higher-order cell selections within gene expression space. Logical combinations of
cell selections are implemented via so called logical cell selectors. Logical cell selectors are a
subset of cell selectors that are not manually defined by the user, but are computed by a logical
operator using other cell selectors as input. PCX supports three types logical cell selectors: i)
AND defines the intersection of two cell selectors, ii) OR defines the union of two cell selectors,
and iii) NOT inverts the selection of a cell selector. An example illustrating the use of logical cell
selectors is provided later in Section 4.7.1. For more details about the cell selector management
in PCX see the PCX user manual [137].

4.3 Overview

While visualization is a powerful approach to gain deeper insights into complex data sets, it is
limited in this case. The intricate and often subtle nature of 3D gene expression data makes
visual detection of all existing features very difficult. For example, a typical feature of interest
would be various groups of cells behaving similarly with respect to the expression of several
genes. A human’s eye and mind, however, cannot readily compute relative concentrations of
gene products.

Data clustering has already proven to be very powerful at revealing details from conceptu-
ally simpler forms of expression data, such as that from microarray experiments, that are not
easily detected visually in raw data. Appropriately defining clustering parameters, such as the
number of clusters, as well as validation and interpretation of clustering results, is a complicated
endeavor.

To overcome these difficulties in both visual analysis and data clustering, this work adapts
data clustering for 3D gene expression analysis by integrating it into PointCloudXplore (PCX).
Figure 4.6 provides an overview of the framework for knowledge discovery from 3D gene ex-
pression data based on PCX. Data clustering facilitates the detection of groups of cells showing
similar expression behavior. Automatically created clusters can be interpreted as a special types
of cell selections. Clusters are managed in PCX by the central cell selector management sys-
tem with additional management options specific to the management of clusters. This allows all
views available in PCX to access and visualize the clusters created by the automatic clustering
procedure (see Section 4.5.1 for details).

In the field of bioinformatics a variety of specific algorithms for the analysis of gene ex-
pression data are available. A new interface between PCX and MATLAB is introduced to make
advanced data analysis tools more readily accessible to the average biologists and to allow bioin-
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Figure 4.6: Analysis framework for knowledge discovery from 3D gene expression data.

formatics experts to more easily validate and deploy their analysis. MATLAB is a technical com-
puting language and environment for algorithm development, numeric computation, as well as
data analysis and visualization. MATLAB is widely used in the bioinformatics research commu-
nity and provides, e.g., also a dedicated bioinformatics toolbox3. With its interface to MATLAB,
PCX can directly call selected analysis functions implemented in MATLAB, transfer data, such
as, gene expression values, cell locations, or cell selection to MATLAB, and import analysis
results in the form of derived-genes or cell selections.

The proposed framework based on the integration of data analysis and visualization enables
a more detailed analysis of 3D gene expression data than previously possible. This chapter dis-
cusses as specific application examples the use of the proposed framework to: i) objectively
define spatial pattern boundaries (see Section 4.7.2), ii) analyze the temporal variation of genes
(see Section 4.7.3 and 4.7.6), and iii) analyze how mRNA patterns are controlled by their regu-
latory transcription factors (see Section 4.7.1, 4.7.4 and 4.7.5).

Within the scope of the proposed framework for knowledge discovery from 3D gene expres-
sion data this work presents the following novel scientific contributions:

(i) To enable automatic classification of cells based on expression this work adapts data clus-
tering to 3D gene expression data (see Section 4.4.1).

3See online at: http://www.mathworks.com/products/bioinfo/
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(ii) Section 4.4.2 introduces a novel approach for evaluation of the number of clusters k in the
context of 3D gene expression clustering.

(iii) To enable detailed analysis of 3D gene expression data, this work describes the integration
of data clustering and visualization into one framework (see Section 4.5).

(iv) As part of this framework, Section 4.5.2.1 presents dedicated post-processing methods for
improvement of clustering results based on visualization.

(v) A novel interface between MATLAB and the visualization system PointCloudXplore (PCX)
makes advanced data analysis more readily accessible to PCX users (see Section 4.6).

(vi) Finally, this work describes several specific applications showing the use of the proposed
framework to: (a) discretize gene expression patterns, (b) analyze the temporal variation
of genes, and (c) investigate how the pattern of a gene is regulated (see Section 4.7).

In the following, first, the application of data clustering to 3D gene expression is described
(see Section 4.4). Afterwards, the integration of data clustering and MATLAB with PCX are
described in detail in Sections 4.5 and 4.6 respectively. Section 4.7 then provides an overview
of results and applications of the proposed framework for knowledge discovery from 3D gene
expression data.

4.4 Clustering 3D Gene Expression

This section addresses the questions: i) How to cluster 3D gene expression data? (see Sec-
tion 4.4.1), and ii) How to define the number of clusters k? (see Section 4.4.2). Afterwards,
the integration of data clustering into PointCloudXplore (PCX) and the workflow of a 3D gene
expression clustering experiment are described in Section 4.5.

4.4.1 Cluster Analysis of 3D Gene Expression Patterns

3D gene expression data can be described as a matrix where each row represents one cell and
each column one cell attribute, i.e., the expression of a gene at a specific time point or the x,
y, z position of the cells in physical space. Note that this form of data is quite different from
that of gene expression microarray matrices, where each row represents a gene and each col-
umn represents expression under a different experimental condition, and spatial relationships
are meaningless. The fact that 3D gene expression data can be expressed as an expression ma-
trix allows standard clustering algorithms to be applied here to classify cells into groups (the
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Figure 4.7: An example clustering of giant(gt) and Krüppel (Kr) using k-means clustering and
Euclidean distances with k = 8. In the scatter plot, the structure of the clusters is shown in
expression space, while the Unrolled View reveals spatial structures formed by the different
clusters.

clusters) of similar expression behavior. To account for the spatial relationships between cells,
dedicated data selection and cluster post-processing approaches are introduced, described later
in Sections 4.5.1.1 and 4.5.2.1.

To implement clustering operations in PointCloudXplore (PCX), portions of the open source
clustering library Cluster 3.0 [59] are used. Data clustering is directly integrated into PCX and
a dedicated GUI provides access to the data clustering functionality and allows management
of clustering results (see Section 4.5.1). Clustering algorithms currently available in PCX in-
clude the most commonly used methods for microarray gene expression data analysis, such as k-
means, k-median, and k-medoid clustering, as well as several hierarchical clustering algorithms,
and self-organizing maps (SOMs) [59, 76, 77, 64]. All these clustering algorithms require an
appropriate distance function in order to define similarity between cells. Within PCX the most
common metrics for defining distances in gene expression space are made available: i) Euclidean
distance, ii) city-block-distance, and iii) several derivatives of the Pearson correlation [59].

Some clustering algorithms require additional parameters, such as the number of clusters k,
to be specified by the user. In the context of 3D gene expression data there exists in general not a
single near-optimal value for k, but one rather finds a number of valid values, each representing
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a different level of detail. This behavior is due to the fact that quantitatively different expression
levels of a gene may lead to multiple different outputs of the underlying genetic regulatory net-
work. It is therefore valid to subdivide elongated structures formed in gene expression space into
several sub-clusters.

For example, considering early-stage giant (gt) and Krüppel (Kr), which are expressed in
spatially non-overlapping patterns, leading to formation of an L-shaped scatter plot (see Fig-
ure 4.7). Even though one could interpret this structure as one cluster — possibly indicating a
NOT relationship between gt and Kr — it is also valid to subdivide this structure into, e.g., eight
clusters, resulting in one cluster representing background expression, a three-level description of
the pattern of Kr, and a four-level description of the gt pattern.

The choice of k depends on the level of detail required by the user. Therefore, an interactive
process is used to define k based on visualization (see Section 4.4.2). The spatial structure formed
by the cells selected by clusters, cluster statistics, and standard data visualizations provides a way
to decide if the number of clusters should be increased or reduced. Depending on the character-
istic spatial patterns of genes, the cells included in a cluster often define some coherent spatial
pattern. Thus, the presence of clusters that show high spatial scattering may be an indication that
the chosen k was too large. To assist in this evaluation process, a novel dedicated cluster quality
measure is presented in Section4.4.2 indicating the physical scattering of clustering results along
with a function for suggesting a good initial k.

4.4.2 Identifying Good Values for k, the Number of Clusters

Many clustering algorithms, such as k-means, require the user to specify as an input parameter
the target number of clusters, k. The quality of clustering results often depends on a proper
choice of k. Unless users have a priori knowledge concerning the number of clusters present
in the data, it is helpful for the user that the software offers a reasonable, initial value for k.
Different approaches for finding an approximately optimal k have been proposed. In the context
of 3D gene expression clustering, those methods based on internal cluster measures are more
appropriate [65, 74]. The objective of the presented approach, as described below, is to provide
the user with assistance in the interactive search for a good k as opposed to trying to automatically
compute the optimal value of k.

Even though internal cluster quality measures may be useful in this context, none of the mea-
sures described earlier in Section 2.7.2.2 take the specific characteristics of 3D gene expression
data into account. Genes are often expressed in characteristic spatial patterns, and one therefore
expects the derived clusters to be spatially compact. The presence of computed clusters with
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high spatial scattering typically suggest that the value of k was too large. Information about the
physical cell position is usually not used in the clustering process hence, spatial compactness
is a criterion available as an independent measure for clustering quality. As discussed below,
spatial cluster scattering can also serve as a measure to indicate a series of adequate values of k.
Combining spatial cluster scattering and the clustering error in expression space yields a method
to identify a good initial value for k that accurately reflects the structures present in the data, but
with relatively low spatial scattering.

As an objective measure for the relative spatial scattering of a clustering result the function:

εscatter(k) = ∑
k
i=1 R1(i)

∑
k
i=1 R∞(i)

(4.1)

is used. Rs(i) (with s > 0) is the number of spatially independent components of cluster i

consisting of at most s cells. R1(i) thus defines all single cell regions in cluster i. R∞(i) is the
total number of spatially independent regions in cluster i. εscatter ∈ [0,1] is independent of the
clustering algorithm, usually has discontinuities, and shows a larger variation for smaller values
of k than for large values of k. Local minima of εscatter indicate values of k for which clusters are
relatively compact, and thus indicate a series of appropriate values of k. In the context of 3D gene
expression data, clustering errors introduced by single cells isolated in physical space are quite
common and the proposed construct for εscatter performs well. An alternative approach might
work better when these cluster outliers consist of small groups of cells. One approach might be a
less sensitive weighted cascade measure that also accounts for larger regions as potential scatter,
such as

εsc(k) =
∑

p
s=1(

1
s ∗∑

k
i=1 Rs(i))

∑
p
s=1(

1
s ∗∑

k
i=1 R∞(i))

, (4.2)

with p > 0 being much smaller than the number of cells.

To evaluate the clustering error in expression space εexp, the average distance, in expression
space, of a cell to the center of the cluster it belongs to,

εexp(k) =
1
n

n

∑
i=1

dist(center(ci),ci), (4.3)

is used, where n is the number of clustered cells, ci is the ith cell, center(ci) is the center of the
cluster to which ci belongs, and dist(·, ·) is the distance operator used in the clustering process.

εscatter and εexp are computed for 2 ≤ k ≤ m by executing a series of clusterings, with m

being the first value where εscatter > 50%. If the pattern of only one gene is used in the clus-
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Figure 4.8: Cluster evaluation functions ε̃exp (red) and εscatter (blue) for the clustering of gt and
Kr, with w = 5 and m = 36. The suggested value for k is eight as shown in Figure 4.7.

Figure 4.9: The patterns of gt and Kr are classified using k-means clustering, as in Figure 4.7,
but with a) k = 5 and b) k = 19. One can see that the suggested k = 8 provides a compromise
between a high level description as shown in a) and a detailed description as shown in b).

tering, εscatter > 60% is used as termination criterion instead because variations in background
expression have a stronger impact on the cluster analysis, and because more complex structures
are possible when multiple genes with spatially overlapping patterns are clustered. Using these
thresholds for εscatter, ensures that the evaluation procedure iterates over all potentially useful
clusterings and does not terminate prematurely. k = 2 serves as starting point because it repre-
sents the first potentially useful clustering. Furthermore, considering the relatively large value of
εexp(1), starting at k = 1 would result in a suggested value for k that is too small.

To identify a value w for k for which the error in expression space is sufficiently low to well
characterize the data, the algorithm identifies the first k for which the decrease in εexp is lower
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than the average decrease
∆̄εexp = εexp(2)−εexp(m)

m−2 . (4.4)

Alternatively w could also be defined as the k that corresponds to the point of the εexp evaluation
curve that is furthest from the line defined by εexp(2) and εexp(m) [139]. While the first approach
tries to find the k for which the expression error has sufficiently decreased, the second approach
tries to identify the so-called knee of the εexp evaluation curve. Both methods depend on m, but
this dependency is well behaved, i.e., with increasing m the suggested w changes slowly and
continuously. During the research and development of this work, both methods seem to work
equally well.

Based on εexp, εscatter, and w, the following algorithm then identifies a good initial k > w that
also results in a relatively low physical scattering:

k = w+1
l = k

for i← l to m

do


if (εscatter(i) < εscatter(l)+ t)

then


k = i

if (εscatter(i) < εscatter(l))
then l = i

Initially, k is set to w+1, which is the lowest value that results in a sufficiently low expression
error. Then, the algorithm tries to optimize the expression error as well as the physical scattering
by searching for a k > w that also results in a relatively low physical scattering. A threshold
of t = 4% is used — determined through empirical testing — to restrict the maximal allowed
increase in εscatter with respect to l, i.e., the k with the lowest relative physical scattering visited
so far. Since εexp decreases with increasing values of k, the error in expression space for the
suggested value for k is guaranteed to be smaller than εexp(w).

Alternatively, one can also view the problem of finding a good initial k as an optimization
problem by looking for the k that minimizes

εtotal(k) =| ε̆exp(k)− 1
w ε̆scatter(k) |, (4.5)

where both εexp and εscatter are normalized. Conceptually, the first approach is more intuitive,
does not require normalization of the evaluation functions, and will always suggest a minimum
of εscatter if an adequate local minimum exists. Using εtotal for finding a good initial k has the
advantage that it does not rely on a threshold t. Furthermore, it may result in a more reliable
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suggestion in cases where εscatter is degenerate since εtotal does not directly rely on the notion
that the physical scattering increases with increasing values of k. In practice both approaches
have shown to be useful.

Beginning with an initial, suggested value of k, the user can determine the best-suited k based
on the information from the cluster evaluation and previews of the different evaluated clustering
results using an Unrolled View. A more detailed description of the interface for evaluation of the
number of clusters k is provided later in Section 4.5.1.2. Even though the initial, suggested value
of k may not always be optimal, our testing has revealed there is value in providing a reasonable
value or range of values for k.

Figure 4.8 shows the cluster evaluation functions for the clustering of gt and Kr. To provide
an overview of both functions in one plot, all cluster number evaluation plots show εscatter along
with

ε̃exp(k) = εexp(k)
εexp(2) . (4.6)

The suggested value for k is eight, which is also a strong local minimum of εscatter. The cor-
responding clustering result for k = 8 is shown in Figure 4.7. Figure 4.9 shows two additional
example classifications of gt and Kr using k = 5 and k = 19. k = 5 is the highest level for which
εscatter = 0 and k = 19 is a local minimum of εscatter (εscatter(19)≈ 35.29%) close to the middle of
the range. As this example illustrates, the suggested level of k = 8 provides a good compromise
between high-level and low-level descriptions of the patterns. The value of k that is best suited to
investigate a biological question depends to a large degree on user requirements. Further example
usages of εscatter and εexp are presented in Sections 4.7.2 and 4.7.3.

εexp and εscatter are global cluster quality measurement functions in the sense that the cluster-
ing quality is evaluated based upon the entire dataset (in this case, all classified cells). Global
error measures might not be appropriate if the user performs a clustering of a larger number of
cells but is interested only in a small subset of clusters defining some local feature of interest.

4.5 Integrating Data Clustering and Visualization for the Anal-
ysis of 3D Gene Expression Data

The processing pipeline offered by PointCloudXplore (PCX) consists of two main interconnected
components, visualization and data clustering, linked via the central cell selector and cluster
management (see Figure 4.10). Visualization provides the ability to explore the data, to deter-
mine appropriate parameters for the clustering, to validate and analyze clustering results, and to
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Figure 4.10: The data clustering and visualization pipeline. The pipeline illustrates the main
components of PointCloudXplore (PCX) as well as the workflow of a 3D gene expression clus-
tering experiment.

modify clustering results using several dedicated cluster post-processing techniques. Clustering
provides ways for automatic identification of data features by classifying cells into groups (the
clusters) based on similarity of their gene expression profiles. Like a manually created cell se-
lector, an automatically created cluster defines a subset of cells in the embryo and can, therefore,
be stored and visualized in the same way as cell selectors. By highlighting clusters in the visu-
alization, analysis and comparison of specific data features becomes possible, enabling a more
detailed and focused analysis of the data.

Figure 4.10’s flowchart illustrates the basic workflow of a 3D gene expression clustering
experiment in PCX. Initially, the user commonly explores the data using the visualization and
manual data mining capabilities of PCX (see Section 4.2). Clustering is then used to investigate
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specific questions of interest. A 3D gene expression clustering experiment consists of several
main steps. First, the user needs to define in the data selection step of the pipeline the data
portions relevant for the clustering experiment (see Section 4.5.1.1). Afterwards, the user needs
to specify mandatory input parameters for the clustering, such as, the number of clusters k.
Finally, the actual clustering can be executed.

The clusters produced by a clustering experiment are then stored and managed by the central
cluster management (see Section 4.5.2). The cluster management is an extension to the cen-
tral cell selector management providing the user with a common interface for managing cell
selections (whether automatically created clusters or manually created cell selectors). Besides
general managing options, the user here also has access to advanced features such as cluster post-
processing and cluster statistics. Cluster post-processing refers to a set of methods for correction
and refinement of clustering results such as: i) merging and splitting of clusters, ii) manual cor-
rection and filtering of clusters, and iii) automatic re-coloring of clusters (see Section 4.5.2.1).
Cluster statistics on the other hand are used for validation and analysis of clustering results (see
Section 4.5.2.2).

Having completed a clustering experiment the user usually investigates and validates the
clustering results using the visualization capabilites of PCX (see Section 4.5.3). Data clustering
supports automatic highlighting of features of the data in the visualization enabling a much more
detailed and focused analysis than a manual exploration procedure. Furthermore, data clustering
enables the detection of fine feature not easily detected by eye or manual data mining.

4.5.1 Data Clustering in PointCloudXplore

The data clustering GUI of PCX follows the structure of the workflow of 3D gene expression
clustering experiments as described above (see Figure 4.10). The clustering GUI is divided
into three main areas (see Figure 4.11). First, the controls for performing the mandatory data
selection step are presented in a box with the title “1. Define Clustering Input.” A user here
needs to define the parts of the data (i.e., genes and cells) relevant for the current clustering
experiment (see Section 4.5.1.1). Second, a user needs to specify different parameters of the
clustering, e.g., name of the clustering experiment and the number of clusters k (see Figure 4.11,
“Define Clustering Parameters” ). Having defined all necessary clustering inputs, the clustering
can be executed using the “Execute Cell Clustering” controls (see Section 4.5.1.2). If the user
does not have a priori knowledge of a good value for k then PCX provides dedicated features to
support the user in the process of finding an appropriate number of clusters (see Section 4.5.1.2).

The target users of PCX include also researchers with no or little experience with data clus-
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Simplified Clustering GUI: Advanced Clustering GUI:

Figure 4.11: PointCloudXplore’s GUI for data clustering supports two different modes to enable
expert as well as non-expert users to make effective use of data clustering in their work. The
simplified controls (left) ask the user only to specify the most important parameters. A “help
text” is shown directly below the controls to guiding the user step-by-step through the clustering
process. To give advanced users full control of the clustering process one can switch to the
advanced controls simply by selecting the “Show Advanced Controls” ceckbox (top left). In
the advanced mode (right) the simplified controls are extended, making all clustering parameters
accessible to the user.

tering. PCX, therefore, provides a simplified clustering GUI in which the user is asked to specify
only the most essential input values while other parameters are set to default values (see Fig-
ure 4.11 left). An expert user can extend these basic controls to access advanced clustering
parameters and gain full control of the clustering process (see Figure 4.11 right).

4.5.1.1 Data Selection

While it is possible to execute the clustering algorithms on an entire dataset, a more typical use
pattern is to focus clustering on a data subset relevant to a specific line of scientific inquiry. The
researcher, therefore, needs to define which parts of the data are relevant to address the current
problem. In order to define which parts of the expression data matrix are relevant, one needs to
define: i) which rows (cells), and ii) which columns (gene+time point, x, y, z) are of interest.
This section describes the different steps involved in the data selection process, as well as the
effects of data selection on the cluster analysis, and describe how spatial information can be
incorporated in the data analysis process. In the GUI the controls for data selection are located
within the box “1. Define Clustering Input” (see Figure 4.11).

Cells of interest can be defined in PCX by using any cell selector or by using the results of
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Figure 4.12: a) giant (gt) expression pattern classified using k-means clustering with Euclidean
distances and k = 3. b) Same, using k = 7 and including x cell positions weighted with 0.24 (after
normalization). c) A box-plot showing the statistics in gt expression (x-axis) for the two main
clusters of the result shown in a) (first two entries on the y axis) and for the four main clusters
of the clustering shown in b). Including spatial information in the clustering resulted in spatially
separated clusters for the main regions of gt, as well as in different threshold levels depending
on the physical cluster locations.

a previous data clustering as input to the clustering process. By default PCX assumes that all
cells of the embryo should be clustered. The according option for defining the cells of interest
is hence only shown in the advanced clustering controls (see Figure 4.11 right). Defining cells
of interest focuses the analysis on a specific part of the data and also reduces the impact of
surrounding noise on the analysis. By explicitly allowing data selection based on cell location,
PCX overcomes one of the limitations of clustering methods designed for expression microarray
data. By using an earlier clustering to define cell subsets of interest, one can first use PCX to
group cells into a smaller number of clusters representing the predominant data features and then
refine these clusters again using additional rounds of data clustering. In PCX, data clustering, as
well as validation of clustering results, can in this way be performed in a step-by-step iterative
process.

Defining which cell attributes are of interest is mandatory prior to clustering in PCX since
these attributes define the actual biological context of the cells. To account for the complexities
of 3D expression data, a variety of unique cell attribute data selection strategies is supported
within PCX. First, genes of interest are generally identified based on visualization of the 3D
gene expression data as well as based on input from other biological experiments, such as in
vivo protein-DNA binding affinity data. Second, to account for spatial location in the clustering
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analysis, it is possible to directly use cell coordinates as input to the PCX clustering process.
Adding this data enforces creation of spatially separated clusters along the AP (x) and/or the
DV (y and z) body axes. Individual weights can be defined for x, y, and z. These weights are
considered in the distance metric (see Section 4.4.1). However, in most cases the preferred way to
incorporate spatial information in the analysis process is by splitting the newly computed clusters
into their main independent spatial components (see Section 4.5.2.1). The main advantage of
such a cluster post-processing technique over including cell coordinates in the clustering process
is that cells with similar expression behavior in different parts of the embryo can be identified,
and possible clustering artifacts due to the mixing of expression and spatial information can be
prevented.

An improved quality of analysis results can be observed by adding spatial information to the
clustering process when classifying the static pattern of a single gene that has a wide spatial dis-
tribution. Figure 4.12 shows as an example the classification of the pattern of the gene giant (gt)
using k-means clustering with and without using x (AP) cell positions in the clustering process.
In the first case, three clusters were created, each selecting cells expressing gt at different levels,
i.e., low, medium, and high expression (Figure 4.12a). By considering x cell positions, the clus-
tering was able to create separate clusters for the different major spatial components of the gt
expression pattern (see Figure 4.12b). In this case, each cluster includes only cells that express
gt at specific levels, while the minimum and maximum expression level selected by each cluster
also depends on its physical location. In this case, higher threshold levels were created in the
anterior, and lower thresholds in the posterior region of the embryo (see Figure 4.12c). Creation
of region-dependent threshold levels is often desirable when analyzing the static pattern of a
single gene since each domain of a pattern may be regulated differently and, therefore, different
thresholds may be appropriate. For gap genes with spatially distant, independent expression do-
mains, such as gt, this simple strategy works well, whereas for patterns with shorter interdomain
distances, such as eve, this strategy fails.

4.5.1.2 Clustering

After having completed the data selection process the user is asked to specify various cluster-
ing parameters (see Figure 4.11, 2. Define Clustering Parameters). In the case of the simplified
clustering GUI the user only needs to specify a name for the clustering experiment and the num-
ber of clusters k. An expert user can then define additional clustering parameters in the advanced
clustering controls, including the clustering algorithm and distance metric to be used, the number
of iterations, and whether the data should be normalized and/or centered.
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Figure 4.13: SVD GUI used for dimensions re-
duction. The percentage of original informa-
tion represented by the according SVD eigen-
genes are shown as bar-graph (top left). The
relationship between SVD eigen-genes and the
original patterns are indicated via a matrix-plot
(tog right). Green indicates positive and red
negative weights. The expression pattern of a
user-selected eigen-gene is shown at the bottom
of the window in an Unrolled View.

Figure 4.14: GUI for the evaluation of the num-
ber of clusters k. At the top, a plot of the clus-
ter evaluation functions εscatter, εexp, and εtotal
is shown. After the evaluation is completed the
suggested values are marked in the plot and a
preview of the suggested clustering is shown at
the bottom in an Unrolled View. Using a slider
the user can and scroll through the evaluated
clusterings by changing k and save any cluster-
ing of interest to cluster management.

To execute the actual clustering the user then may chose different paths. First, if the user
has a priori knowledge of the number of clusters k, then the clustering can simply be executed
directly (see Figure 4.11, 3. Execute Cell Clustering). Second, if the user has a priori knowledge
of the number of clusters k but the number of input genes is very large, then the advanced user
may chose to perform dimension reduction prior to clustering (see Figure 4.11, Decompose and
Cluster). In this case, singular value decomposition (SVD) [140, 141] is used to decompose
the expression data matrix and only the user selected SVD eigen-genes are considered in the
clustering process [160] (see Figure 4.13). Third, if the user has no a priori knowledge of the
number of clusters k then PCX can assist the user in finding a good value for k (see Figure 4.11,
Evaluate k ).
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In the latter case, PCX will compute a series of clustering results with increasing k and
evaluate the cluster quality functions εscatter, εexp, and εtotal as described in Section 4.4.2. In this
process the cluster evaluation plot of the three functions is constantly updated (see Figure 4.14
top) and an Unrolled View with a preview of the latest clustering is displayed (see Figure 4.14
bottom). The evaluation process can be terminated by the user at any time. If the user does not
stop the evaluation manually then it will terminate automatically as soon as the predefined stop
criteria are reached (e.g. εscatter > 0.5; see Section 4.4.2). Afterwards, all recommended values
for k are marked in the cluster evaluation plot. The user can then scroll through the Unrolled
View previews of the different evaluated clusterings and save any clustering result of interest.

4.5.2 Cluster Management and Analysis

Once created, clusters are stored and managed by a central cluster management system in PCX
(see Figure 4.10). Clusters are implemented in PCX as a special type of POSITION cell selec-
tors selecting cells directly via their unique identifiers (IDs). Clusters can, hence, be managed,
visualized, and edited in PCX in the same way as POSITION cell selectors. In contrast to manu-
ally created cell selectors, automatically created clusters are, however, associated with a specific
clustering experiment. Information about which clustering experiment resulted in the creation of
a cluster as well as the used clustering settings (e.g., the genes used in the clustering, etc.) are
essential to ensure reproducibility of the analysis and allows for effective grouping of clusters.
Furthermore, clustering results need to be validated by, e.g., investigating the compactness of
clusters.

To account for these special requirements, PCX provides a dedicated cluster management
system (see Figure 4.15). The cluster management is a direct extension of the central cell selector
management providing the user with a central interface for managing all types of cell selections.
Consistent with the cell selector management, a table view is used for management of clusters
(see Figure 4.15). In the table view a user can edit general properties of cluster, such as, cluster
color, and review the settings used to create a cluster. To ease management of a large number
of clusters, a user can chose to display either all, or only those clusters created during a specific
clustering experiment in the table view.

Besides general management option, the cluster management also provides access to ad-
vanced features such as cluster post-processing (see Section 4.5.2.1) and cluster statistics (see
Section 4.5.2.2). Cluster post-processing refers to a set of methods used for improvement and re-
finement of clustering results whereas cluster statistics provide means for validation and analysis
of clusters.
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Figure 4.15: In PCX, the cluster management is integrated directly with the GUI of the central
cell selector management. Common controls, e.g., for deleting a selected cell selector or cluster,
are displayed at the top. Below these controls, the cell selector and cluster management are
shown in two separate boxes. Besides general management options to define, e.g., the color of
a cluster, the user here also has access to dedicated features such as cluster statistics and post-
processing.

4.5.2.1 Cluster Post-processing

Cluster post-processing is essential to allow users to modify clustering results with respect to
validation results or prior knowledge. There are four ways to post-process clusters in PCX.
Manual correction and cluster filtering are two ways to correct small groups of misclassified
cells. Cluster merging and splitting provide means to derive coarser or finer representations
based on spatial information from the initial clustering.

Manual correction of clustering results can be performed in any physical view. By drawing
on the embryo surface, one can interactively add and erase cells from the selection defined by a
cluster. In contrast, filtering provides an automatic way to correct misclassified cells. Because
genes are usually expressed in coherent spatial patterns, outliers in physical space tend to be also
outliers in gene expression space.

Cluster filtering is an automatic method that identifies and reassigns misclassified cells to the
spatially neighboring cluster that is closest in expression space. First, the filtering identifies all
spatially independent components of a cluster that consist of less than M cells. To rule out false
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Figure 4.16: Filtering applied to an example cluster. The cluster is split into its four independent
spatial components (red, blue, and two shown in green). The profiles of these regions in gene
expression space are shown in parallel coordinates. The genes slp1, hb, Kr, gt, kni, and tll, which
were used to obtain this clustering result, are each represented by one axis in the plot, and the
percentage of expression is shown in ordinate direction (y-axis). One can see that the blue cells
are spatially more distant to the main component of the cluster (red) than the green cells, and that
they show a higher divergence from the main spatial component of the cluster in gene expression
space.

filtering, a minimum distance in physical space as well as a maximum error in expression space
can be defined. In the example shown in Figure 4.16, it would be possible to exclude the cells
shown in green from the filtering process either by increasing the minimum spatial distance or
by reducing the maximum allowed error in expression space. Having identified the misclassified
cells the filtering then reassigns these cells to the spatially neighboring cluster that is closest in
expression space

Cluster merging allows two clusters to be combined to form a single cluster. Merging clusters
allows coarser representations to be created from an initial finer clustering. Such coarser descrip-
tions often provide a clearer visualization that focuses on the main question being addressed (see,
e.g., Section 4.7.2).

Cluster splitting, on the other hand, provides means to refine a cluster by dividing it into a
set of clusters defining its main spatial components. Splitting clusters hence provides means to
derive finer representation from clusters based on spatial information. A cluster often consists
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of several spatially independent components (for example Figure 4.24), which may need to be
treated differently in subsequent analysis. In general, however, one major component of a cluster
may be defined by a number of small spatially independent components. PCX uses a modified
single linkage clustering approach to split up such a cluster into a selected (often smaller) number
of components.

The splitting algorithm works as follows: A cluster is first split into all its spatially indepen-
dent components. The smallest components are subsequently merged with the spatially closest
component. This approach is computationally more efficient and less sensitive to outliers than a
classical single linkage clustering and also guarantees that the independent spatial components
of a cluster are preserved while small, scattered components can still grow to define major cluster
components. An example for cluster splitting is described later in Section 4.7.2.

4.5.2.2 Cluster Statistics and Validation

Analysis of statistical properties of clusters is essential for both the validation and analysis of
clustering results. Cluster properties provided by PCX include the percentage of cells selected
by a cluster, as well as the minimum, maximum, average, and standard deviation values for gene
expression levels in a cluster. In addition, histograms provide the user with information about
the distribution of expression values within clusters. A valid clustering is expected to produce
compact clusters in the the gene dimensions used for clustering. Using cluster statistics a user
can effectively investigate the compactness of clusters in expression space and validate clustering
results. Besides for validation, cluster statistics play also an important role in the analysis of
clustering results. Average curve plots, e.g, are often used to investigate the temporal variation
of genes within clusters.

To compare these statistical properties for one gene in multiple clusters or multiple genes in
one cluster, PCX provides box-plots and multi-dimensional color/transparency histogram plots.
The histogram plots use both color and transparency to visualize the number of cells within a
cluster that express the gene over a range of expression levels. Average curve plots (with optional
error bars showing standard deviation values) aid in simultaneous analysis of multiple clusters in
multiple genes. For convenience a 2D scatter plot and an Unrolled View are also made available
in the cluster statistics window enabling a more efficient workflow.

Figure 4.17 shows a simple example in which various cluster statistic plots are used to in-
vestigate expression characteristics of different parts of the giant (gt) expression pattern. More
examples illustrating the use of cluster statistic in the context of realistic use case examples are
provided later in Section 4.7.3 and 4.7.4.
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Figure 4.17: An analysis of characteristics of the giant (gt) expression pattern using cluster
statistics. a) An unrolled view showing the spatial structure defined by five clusters. The red and
orange cluster define the centers of the two expression regions of gt, and the other clusters define
the boundaries. b) A curve plot showing the average expression profiles of the genes D, Kr, gt,
and hb in each of the five clusters (x-axis). The y-axis represents expression level. c) A Box-plot
comparing the expression of hb in the five clusters. The x-axis represents expression level. d)
A color/transparency histogram comparing the expression of D, Kr, gt, and hb for cluster p 2
(green). The x-axis indicates gene expression level. A heat-map coloring scheme is used to
indicate the number of cells in the cluster having a given expression level: red indicates many
cells, while blue indicates few cells.

4.5.3 Cluster Visualization

As described earlier, clusters are implemented in PCX as a special type of cell selector. Au-
tomatically created clusters can, hence, be visualized in PCX in the same way as regular cell
selectors. The most common way to visualize clusters (and cell selectors) in PCX is through
the use of a consistent color mapping. In the visualization, PCX allows colors to be assigned
to clusters either randomly, manually, according to size, or according to the average or ranked
average expression of selected gene(s) in the clusters.

Using physical views, the spatial pattern defined by a cluster can be analyzed. By mapping
cluster colors onto the expression surface of a gene, a user can effectively compare the spatial
patterns defined by a set of clusters with the spatial expression pattern of a gene. This approach
provides a user with a qualitative notion of the goodness of fit of patterns predicted by the clus-
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tering and the spatial patterns defined by the expression of suspected target genes (see, e.g.,
Section 4.7.4 and 4.7.6).

Abstract views allow for identification of cluster characteristics in gene expression space.
Scatter plots provide the user with an intuitive visualization revealing the location and structure
of clusters in 2D/3D gene expression space. Parallel coordinates are then used to analyze cluster
characteristics in n-dimensional gene expression space. PCX supports cell-selector bands and
other dedicated extensions to standard parallel coordinates enabling the comparison of expression
characteristics of multiple clusters in multiple gene expressions (see Section 4.2.2.3).

4.6 Integrating MATLAB and PointCloudXplore for the Anal-
ysis of 3D Gene Expression Data

MATLAB provides a rich set of visualization and analysis tools. However, this functionality is
not readily accessible to the average biologist with little or no programming experience. Fur-
thermore, MATLAB is designed as a general purpose analysis environment and not specifically
for the analysis of 3D gene expression data. To overcome these limitations, this work extends
PointCloudXplore (PCX) so that it can be used as a direct interface to MATLAB with the goal to:
i) make advanced analysis functions defined in MATLAB more readily accessible to PCX users,
ii) enable MATLAB developers to directly integrate their analysis with the visualization to ease
validation and deployment of their code, iii) enable researchers to flexibly extend PCX, and iv)
to provide an effective link between bioinformatics researchers and their target users. Ultimately
this means that: i) PCX users should not be required to know MATLAB in order to use analysis
functions defined in MATLAB, and ii) developers should not be required to modify PCX (or
know its internal design) in order to integrate their analysis functions defined in MATLAB with
PCX.

To achieve these goals, PCX implements an interface for direct communication with MAT-
LAB based on MATLAB’s C API. Using this interface, PCX can start and close a MATLAB
environment, import/export data from and to MATLAB, and initiate MATLAB function calls.
This interface allows PCX to perform all communications necessary to support MATLAB-based
analysis.

In order to make a MATLAB function accessible to PCX, a developer needs to create: i) a
M file with the function specification4, and ii) a so called PCXM file with a description of the

4M files are the standard format of MATLAB to define functions that can accept input arguments and return
output arguments. Functions specified in M files operate on variables within their own workspace. The name of the
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function (see Appendix A for details). The M file defines the implementation of the actual anal-
ysis function whereas the PCXM file describes how PCX should represent and call the function.
In the PCXM file the developer needs to specify: i) a name (NAME ) and type (TYPE ) for the
function, ii) the path (DIR ) to the M file, and iii) the MATLAB command (CALL ) to be used
to call the function (see Appendix A.2 for details). The name and type of a function are used to
represent the function in the GUI of PCX whereas the DIR and CALL parameter are used to call
the function.

Based on the CALL string PCX automatically identifies which inputs a function expects and
which outputs it will create. In order to do this, PCX specifies a set of name conventions (see
Appendix A.3) for the in- and output parameters. PCX supports a wide range of in- and output
options (see Appendix A.3) and can practically send all the data of a PointCloud to MATLAB,
e.g., i) gene expressions and gene names, ii) cell positions, iii) projected cell positions form the
Unrolled View, iv) cell neighbors as defined in the Cell View, or v) the filename. In addition
PCX can also send to MATLAB cell selectors and their names as well as any double, integer, or
Boolean input parameters specified as user input. The data PCX sends to MATLAB can in turn be
directly accessed by the according MATLAB function. An analysis function then may produce
the following outputs to be imported by PCX: i) new derived-gene expressions, ii) optional names
for new derived-gene expressions, iii) new cell selections to be stored as cell selectors, and iv)
optional names for new cell selectors. All in- and output parameters are optional and in general
any combination of in- and output parameters is valid. A detailed description of PCX’s interface
to MATLAB is provided in Appendix A.

PCX’s MATLAB interface allows the integration of MATLAB functions with PCX without
the need to re-compile any code, i.e., PCX does not require any information about the MATLAB
functions it should access during compile-time. On start-up PCX parses all PCXM files located
in the current function path. Based on the information of the PCXM files, PCX automatically
creates a menu bar listing the accessible MATLAB functions grouped by their type. From this
menu bar a user can conveniently access all available MATLAB functions. Upon calling, PCX
automatically creates at runtime a dedicated GUI allowing the user to specify all necessary input
parameters of the according analysis function. During execution of the analysis, PCX automat-
ically handles all necessary communication with MATLAB (e.g., send input data to MATLAB,
call the function, and import data from MATLAB).

The fact that all operations necessary to integrate a MATLAB function into PCX are per-
formed at runtime allows for great flexibility with respect to the management of external analysis

M -file and the function its specifies should be the same.
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Figure 4.18: Sequence diagram illustrating the workflow of a typical use case scenario involving
PointCloudXplore (PCX) and MATLAB. The sequence is divided into three main steps: i) start-
up, ii) execution, and iii) termination. Note that the user only interacts with PCX itself. All
communications with MATLAB are handled automatically by PCX.

functions. A user, e.g., may change the path to the folder were the external analysis functions are
located at any time, i.e., the user can switch between different sets of external analysis functions
located in different folders at runtime. A developer can also, e.g., update an analysis function at
runtime and test it immediately without having to restart PCX. In fact, as long as only the imple-
mentation (i.e., the M file) but not the description (i.e., the PCXM file) of a function changes,
PCX does not need to be updated at all since the function itself is dynamically accessed by
MATLAB upon execution.

Figure 4.18 illustrates the structure of the PCX/MATLAB-interface and the general workflow
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of a typical use case scenario involving both, PCX and MATLAB. On start-up, PCX first parses
all .pcxm files located at the current function path and dynamically creates the MATLAB menu
bar listing all available externale analysis functions. When the user requests the execution of
a MATLAB analysis function PCX first starts a MATLAB engine if it is not already running.
Afterwards, PCX creates at runtime a dedicated GUI according to the description of the analysis
function allowing the user to specify all required input values directly from within PCX. PCX
then sends the necessary data to MATLAB and calls the analysis function. After completion
of the analysis, PCX imports the analysis results, such as new derived-gene expressions or cell
selections. The user can then investigate the analysis results using PCX. In case that MATLAB
is used for visualization then the according plot will be displayed in a separate window created
and managed by MATLAB itself. When PCX is terminated it will automatically also close the
MATLAB engine it started.

In the whole analysis process no direct interaction between MATLAB and the user is re-
quired. The user only interacts directly with PCX which in turn automatically handles all re-
quired communication with MATLAB. PCX give the user in this way access to advanced MAT-
LAB analysis functions while effectively hiding the complexity of using MATLAB from the
user, i.e., from a users perspective MATLAB appears as a black box.

From a developer’s perspective, PCX’s interface to MATLAB allows an effortless integration
of analysis functions defined in MATLAB with PCX. Developers usually already package their
analysis functions in M files so that the developer only needs to ensure that the interface of the
function fits the requirements (i.e., the name conventions) of the PCX/MATLAB interface. In
addition the developer only needs to create an according PCXM file describing the function for
PCX. Most importantly, a developer does not need to (re)compile any code in order to integrate
a MATLAB function into PCX. As illustrated in the examples described in Appendix A, the
additional work required to integrate a new MATLAB function into PCX is usually minimal.

The interface between PCX and MATLAB has a wide range of possible applications, e.g., i)
plotting, i.e., use MATLAB to create dedicated data visualizations (see Appendix A.4.1), ii) se-
lection, i.e., use MATLAB for automatic cell selection and feature detection (e.g., via clustering)
(see Appendix A.4.3), or iii) filtering, i.e., use MATLAB to define new derived-gene expressions.
Expression filtering itself has a wide range of applications. Besides smoothing of expression pat-
terns or noise reduction, expression filtering can, e.g., be used for modeling of genetic regulatory
networks (see Sections 4.7.5), analysis of the temporal variation of genes (see Section 4.7.6), or
validation and improvement of clustering results (see Section 4.7.6).
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4.7 Results and Applications

This section discusses several examples illustrating the use of the proposed framework for knowl-
edge discovery from 3D gene expression data. Section 4.7.1 describes the exploration of regula-
tory relationships between genes using manual data mining based on visualization. Afterwards
several examples are presented illustrating the effectiveness of data clustering and visualization
to address the following questions: i) How can cells usefully be divided into distinct components
of a gene’s expression pattern? (see Section 4.7.2); ii) What is the temporal variation of a gene
expression pattern? (see Section 4.7.3); and iii) What components of a gene’s expression pattern
are related to the expression patterns of the regulatory factors that control it? (Section 4.7.4).
Finally, the last two examples describe the use of MATLAB and PointCloudXplore (PCX) for
modeling of genetic regulatory networks (see Sections 4.7.5) and analysis of the temporal varia-
tion of a gene expression pattern (see Section 4.7.5).

4.7.1 Exploring Regulatory Relationships Using Manual Selection

The examples described in this section illustrate the exploration of regulatory relationships be-
tween genes using the advanced visualization and manual data mining features of PointCloudX-
plore (PCX). Cell selection in physical views limits the data set into specific parts of the embryo.
The combination with abstract views, like scatter plots or the Cell Magnifier, help in more rigor-
ous selection of studied expression values.

For example, the upper panel of Figure 4.19 shows the use of the Cell Magnifier and Seed Cell
Selection to select a single eve stripe for further analyses. The bottom panel shows the inverse;
by selecting three known regulators of eve, gt, hb and Kr (bottom left panel), one can more or
less reproduce the selected eve stripe, as shown in the right panel. Importantly for biologists,
the same method can be used for identifying novel interactions between genes with interesting
spatial patterns or scatter plot correlations. Using PCX to first identify candidate genes for later
experimental validation will often be much cheaper than the traditional methods for selecting
candidate genes, such as mutagenesis screens or by staining for co-expression for each gene pair,
although there are cases when the older methods are more useful.

Interestingly, the same results can be obtained in multiple ways, to suit the questions of the
biologists using the tools. As Figure 4.20 shows, eve stripe 2 can be detected also using the
whole embryo expression data with help of logical operators. However, when not limiting the
data spatially, additional details are often revealed. In this case, the logical combination of gt, hb
and Kr expression also follow the anterior border of eve stripe 7. While regulation of eve stripe
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Figure 4.19: Using Physical Views and Cell Magnifier to examine regulatory relationships for
eve stripe 2.

Figure 4.20: Using logical operations to examine regulatory relationships for eve stripe 2 and
7. The expression patterns of giant (gt), hunchback (hb), Krüppel (Kr), and tailless (tll) are first
classified by defining an independent cell selector in scatter plots (DATA cell selector) for each
gene. Subsequently, the cell selectors defining the gt, Kr, and tll patterns are inverted using a
NOT operation. Afterwards these logical cell selectors as well the cell selector defining the hb
pattern are combined using a sequence of AND operations. In this way the overlap of the hb
expression pattern, and the inverted gt, Kr, and tll expression patterns can be determined. The
result (green) is compared to the eve expression pattern (red) identified by another DATA cell
selector.
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2 is often understood to be separate from eve stripe 7 regulation, actually there is some evidence
that the stripe 7 regulatory region is partially connected to the stripe 2 regulatory region [142].
In this case, it makes sense that both stripes also correlate similarly with the expression of stripe
2 transcriptional regulators. Moreover, when adding tll expression to the equation, the posterior
border of stripe 7 is obtained, in line with earlier 1D simulation results [142]. Notably, normal tll
expression has been experimentally shown to upregulate the commonly cited minimal regulator
of eve stripe 7, perhaps because of indirect effects, e.g., by inhibition of inhibitors of eve stripe
7 in this minimal regulator. This shows that though computational analysis of data can reveal
interesting correlations that might be indicative of novel biological interactions, data mining
results should be validated with real experiments. However, PCX is a useful data mining tool,
not only for directing the expensive in vivo experimentation, but also for directing simulation
experiments, where the expression analyses in PCX can additionally be used for validating the
simulation results.

As theses examples show, an analysis based on manual exploration can be very revealing.
However, manual data mining has its limitations. Using a single thresholds to describe expression
patterns results in binary (on/off) pattern descriptions and, hence, loss of detail. For example, in a
binary description of the expression pattern of eve information about the variation of the pattern
along the DV circumference is lost (see, e.g., Figure 4.3). Furthermore, manual thresholding is
arbitrary, i.e., thresholds are not fully data-dependent. The examples described in the following
sections illustrate the use of data clustering and the PCX/MATLAB-interface to address these
problems.

4.7.2 Single Pattern Analysis

Genes are frequently expressed in complex patterns that show a wide range of quantitative
changes in expression across the cells of an embryo. Although for some analyses, the data is
best left unclassified in this form —simply using the expression values in all cells— it can also
be revealing to divide a single pattern into one or more distinct regions. For example, on/off
descriptions of expression have been useful in logical models of gene networks [143, 144] (see
also Section 4.7.1).

However, as described earlier, discretizing a gene pattern via manual thresholding can be
problematic — it may be very time-consuming, and the choice of thresholds is arbitrary and not
fully data-dependent. The specific problem of pattern segmentation is described in earlier work
by Huang et al. [163] in which the authors compare different methods for creating binary (i.e.,
on/off) descriptions of expression patterns. To address the more general problem of discretizing
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Figure 4.21: a) The expression pattern of eve at stage 5:9-25%; Classification of eve with b)
k = 2; c) k = 3; and d) k = 6. While the k = 2 clustering produced a threshold that was too high,
erasing too many cells from the pattern, the k = 3 clustering was better able to identify the seven
stripes of the eve expression pattern. The k = 6 clustering identified additional characteristic
variations within the stripes along the DV-axis as well as an additional cluster that selects some
inter-stripe cells showing some higher expression of eve.

a gene pattern, one can use, for example, k-means clustering and Euclidean distances to compute
a number of data-dependent thresholds. Each of the k clusters then represents a specific threshold
range that can be interpreted as a different confidence level. Different components of a pattern
may be regulated by different genes, so different thresholds may be appropriate for different
regions. Cluster post-processing, such as splitting clusters into their main spatial components,
allows different threshold levels to be selected for different components of a gene pattern. Al-
ternatively, as described in Section 4.5.1.1, for genes with clearly distinct spatial expression do-
mains, cell positions may be used in the initial clustering to enforce creation of separate clusters
for spatially distant components of a pattern. Rather than choosing some arbitrary thresholds,
clustering automatically suggests thresholds based on the histogram of the data. The k-means
clustering algorithm seeks to minimize the mean squared distance from each data point (cell) to
its nearest cluster center. To achieve this goal, the k-means algorithm will create k cluster centers
positioned according to the density distribution of the expression values of the selected gene.

Figure 4.21 shows three example classifications of the eve expression pattern using different
numbers of clusters k. While k = 2 produces a threshold that is too high and does not capture
all parts of each stripe, a clustering with k = 3 correctly identifies the seven stripes of the eve
expression pattern. By increasing the number of clusters, additional details within the stripes
along the dorsal-ventral axis can be seen, as well as an additional cluster selecting cells in the
inter-stripe regions. This complex description illustrates that thinking of a gene as being either
on or off is usually too simplistic. The fact that clustering automatically reveals differences along
the dorsal-ventral axis demonstrates the usefulness of such analyses. The pair-rule genes, such
as eve, are not typically thought of as dorsal-ventral regulators, but consistent with the clustering
results, careful quantitation of the levels of eve and similar gene’s expression has shown they
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Figure 4.22: Cluster evaluation functions ε̃exp (red) and εscatter (blue) for the clustering of the
eve expression pattern (left), with w = 4 and m = 9. The suggested value for k is five, which is
the largest value of k for which only one cluster representing low background eve expression is
created (right).

indeed show up to two-fold changes in expression along the dorsal-ventral axis suggesting a
dorsal-ventral component in pair-rule regulation [99, 94]. Analyzing the actual meaning of these
moderate changes requires computational tools, such as cluster analysis, to provide objective
measures of their significance.

Figure 4.22 (left) shows the curves of the cluster evaluation functions εscatter and ε̃exp. In this
case, εscatter is rather smooth and monotonically increasing indicating that all k with εscatter > 0
may result in valid clusterings of the eve pattern. This behavior can be explained by the very high
signal-to-noise ratio of the eve expression data, which was averaged from dozens of embryos.
The suggested value for k is five, which is the largest value of k for which only one cluster
representing low eve expression is created (see Figure 4.22, right). A clustering with k = 5
provides a compromise between a high-level and low-level description of the eve expression
pattern.

Binarized versions of the eve pattern (i.e., on/off descriptions) can be created by merging the
different clusters, allowing one to easily compare the different classifications by defining their
overlay (see Figure 4.23). While k = 3 and k = 6 result in similar classifications of the seven
stripes, the clustering with k = 2 misses many cells of the pattern. Thus, first generating multiple
clusters and then merging them can provide a more accurate binarization of an expression pattern
than an initial k = 2.

Cluster merging and splitting can also be useful for comparing different gene patterns or
for comparing different components of a single gene’s pattern. In Figure 4.25, for example,
the individual clusters shown in Figure 4.21d have been merged and then split to obtain one
cluster representing each stripe. Figure 4.24 shows an example where the cluster that defined
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Figure 4.23: Comparison of the clustering results shown in Figure 4.21. a) Comparison of k = 2
(red) and k = 3 (blue) classification of eve; b) Comparison of k = 3 (red) and k = 6 (blue)
classification of eve. In b), the additional inter-stripe cluster found in the k = 6 clustering is
shown in dark green. The percentage of cells of the whole embryo selected by the different
components are: k2 = 31.31%; k3 = 42.596%; k6 = 42.892%; k3− k2 = 11.287%; k6− k3 =
0.296%; k6 interstripe cluster = 21.06%.

Figure 4.24: a) A cluster consisting of 296 spatially independent components; b) The same
cluster split into its seven main spatial components. Splitting of clusters is essential, e.g., to
allow comparison of different main spatial components of a cluster.

the boundary of the stripes, consisting of 296 spatially independent components, is split into its
seven main components using the modified single linkage method described in Section 4.5.2.1.

Once derived, these individual stripe clusters are used to highlight the seven eve stripes via
color in different abstract views. For example, the expression behavior of gt, hb, and Kr –three
known transcriptional regulators of eve– can be revealingly analyzed within each of the eve
stripes using a 3D scatter plot (Figure 4.25). In the plot large differences between stripes are
visible, the seven stripes form very distinct point clusters within the scatter plot. This behavior
is consistent with current models suggesting that the eve expression pattern does not simply
consist of seven identical stripes, but that many stripes are regulated independently. The available
data suggests that gt, hb, and Kr control some stripes, but the scatter plot suggests that these
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Figure 4.25: An Unrolled View show-
ing seven clusters, each selecting one
stripe of the eve expression pattern (bot-
tom left). The same clusters shown in
a scatter plot of early-stage Kr (red), gt
(green), and hb (blue). Color indicates
to which cluster a cell belongs, while
cells not selected by any cluster are col-
ored gray. The stripes form characteris-
tic clusters in expression space indicat-
ing a potential relationship between eve
and the displayed genes.

Figure 4.26: The same clusters as in Figure 4.25 are
shown in a 2D parallel coordinate view of early stage
hb, gt, kni, Kr, tll. The average expression of the
seven clusters in the different genes are shown via ad-
ditional, thicker lines of darker colors and the associ-
ated standard deviations are shown via boxes placed
on each parallel axis. Highly transparent color bands
shown in front of the plot are used to further highlight
the different clusters.

factors have the potential to regulate all stripes by their unique combinations of expression levels.
Such plots can be very useful in identifying potential novel regulatory relationships between
transcription factors and their targets.

Generally, scatter plots have proven to be a very intuitive and informative gene expression
space visualization, but are limited due to the fact that only three gene dimensions can be vi-
sualized at once. PointCloudXplore (PCX) also provides 2D and 3D parallel coordinates to
support simultaneous visualization of many more genes [157]. In Figure 4.26, the same clusters
as in Figure 4.25 are shown in a 2D parallel coordinate view of early stage hb, gt, kni, Kr, and
tll indicating additional expression differences between the spatial clusters. Because numerical
PointCloud datasets are not easily comprehensible, the clustering and cluster manipulation capa-
bilities in PCX provide a reasonably objective method for dividing quantitative spatial expression
data into units that can be analyzed computationally.
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Figure 4.27: The expression pattern of giant (gt) shown at six different time cohorts of stage 5
of embryo development.

Figure 4.28: Cluster evaluation functions ε̃exp (red) and εscatter (blue) for the clustering of the six
time steps of gt (w = 10, m = 54). The suggested value for k is seventeen. εscatter further indicates
that seventeen is the highest k for the particular level of detail with relatively low overall physical
cluster scattering.

4.7.3 Temporal Variation Analysis

Gene expression patterns are not static but highly dynamic. Knowledge of the temporal profile of
a gene expression pattern is essential for the understanding of the complex relationships between
genes. Even though visual inspection of an expression pattern at different time steps provides an
impression of the general temporal behavior of a gene, many important features, such as groups
of cells with a similar temporal expression profile, are not easily detected and visual quantifica-
tion of temporal change is not accurate. For example, the pattern of giant (gt) expression can
be seen to change between six time cohorts within one hour, but it is not possible to rigorously
describe how (see Figure 4.27). To show how PointCloudXplore (PCX) can assist in the analysis
of the spatio-temporal expression pattern of genes, clustering is used to classify cells into groups
of similar temporal behavior.

In Figure 4.28, the curves of the cluster evaluation functions εscatter and ε̃exp are shown.
The suggested number of clusters k is seventeen, which is also a local minimum of εscatter

with εscatter(17) ≈ 31.88%. The overall behavior of εscatter indicates that k = 17 is the largest
value of k at the particular level of detail for which εscatter is still relatively low. A comparison
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Figure 4.29: Based on the patterns of gt shown in Figure 4.27, cells were classified into seventeen
clusters as suggested by εscatter and εexp. Two clusters selected cells showing only background
expression of gt at all time steps and are therefore not shown here. Clusters 1, 8, and 16 were
each split into their two main spatial components. The remaining clusters were not split, since no
significant divergence in the temporal expression profile between their main spatial components
could be identified. a) An unrolled view showing all eighteen clusters of interest. b-h) The user
grouped the eighteen temporal clusters into seven main groups based on their average temporal
expression profiles in gt. The six time steps are shown on the x-axis and the expression level
on the y-axis of each plot. The spatial patterns defined by the clusters are displayed in the
accompanying unrolled view plots.

of εscatter(17) to the next two lower local minima of εscatter — with εscatter(12) ≈ 31.21% and
εscatter(10)≈ 29.25% — shows only a moderate increase in εscatter. When comparing εscatter(17)
to the εscatter values of the next two larger local minima of εscatter — with εscatter(19) ≈ 36.34%
and εscatter(22)≈ 40.14% — a significantly higher increase in relative physical cluster scattering
is visible. This behavior can be interpreted as an indication that k = 17 may also provide a good
compromise between a high-level and low-level description of the temporal variation of the gt
expression pattern. A level of k = 17 was also confirmed to be appropriate by users of PCX.

Figure 4.29 shows as an example the result for gt, in which its expression patterns at six
successive time cohorts were classified into seventeen clusters using k-means clustering and Eu-
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clidean distances. Two of the seventeen clusters selected cells showing only background expres-
sion at all time steps and are not shown. Each of the other fifteen clusters show distinct average
expression profiles (the differently colored lines plotted in Figure 4.29), though some clusters
show profiles that are closely related. In the figure, the user has grouped these clusters into seven
main sub-groups based on their temporal average expression profiles, shown in panels b-h. In
addition, clusters 1, 8 and 16 have each been split into two components to separate their anterior
and posterior components.

Several trends can be readily seen from the different views of the analysis. The unrolled
physical views show that clusters with similar average temporal expression profiles frequently,
but not always, are adjacent to one another in the embryo. Expression within a set of clusters
in the very anterior of the embryo increases particularly during the later time cohorts (visible,
for example, in Figure 4.29b). Expression in the posterior margins of both of the major early gt
stripes drops rapidly over the time series (Figure 4.29f-h). It is known that the location of the
posterior gt stripe moves anteriorly during this time series [145, 99], but the data show a much
more complex pattern of temporal change than has been observed previously. These results
suggest that a complex combination of regulatory interactions drives these patterns.

4.7.4 Multiple Pattern Analysis

To dissect the complex regulatory interactions between genes, the expression patterns of different
transcription factors that potentially act together as regulators may be used as input to cluster
analysis. Cells are classified into clusters that have similar combinations of expression for the
input set of regulators. Each cluster thus describes one potential sub-pattern that a regulatory
network composed of these factors could give rise to. The total number of clusters then gives
an approximation of the maximal complexity of the output of the network. The results of such
a clustering can also be compared to the expression patterns of suspected target genes to assess
possible regulatory relationships.

To provide an example of such multi-gene clustering, this section describes an examination
of the relationship between the three transcriptional regulators giant (gt), hunchback (hb), and
Krüppel (Kr) and the second stripe of the eve gene. These three factors are well-characterized
regulators of this expression stripe; hb is an activator and Kr and gt are repressors [92]. As
discussed in Section 4.7.2, the seven stripes of eve form characteristic clusters in gene expression
space with respect to gt, hb, and Kr expression. By using these three factors’ expression patterns
as input to a clustering analysis, one can identify the potential expression pattern components
that can be defined based on these regulators (see Figure 4.30). The mRNA expression values of
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Figure 4.30: a) The transcription factors gt, hb and Kr at stage 5:0-3% are used as input to the
clustering; their potential target is eve stripe 2 at stage 5:9-25% (see Section 4.7.2). b) Cells were
classified into 22 clusters of which eight are of particular interest. Five clusters actually model
eve stripe 2 and three define the inter-stripe region between stripes 1 and 2, and stripes 2 and 3.
Cluster filtering was applied to three single cells only. Clusters were split in order to separate
the stripe-like clusters with similar expression profiles from other spatially distant sub-clusters
in the anterior and posterior region of the embryo. c) An average curve plot of the five clusters
within eve stripe 2 showing the characteristic expression profiles of Kr, gt, and hb. d) Average
expression curves for the three inter-stripe clusters. In both average curve plots, Kr, gt, and hb
are shown on the x-axis and the level of expression along the y-axis.

gt, hb, and Kr from the first temporal cohort (0%-3% invagination) are here used to simulate their
protein expression values at the third temporal cohort (9%-25% invagination) — the stage of the
eve comparison target. This lag was found, on average, to be optimal for all regulators [161].
In the example, cells are classified into 22 clusters that map to locations throughout the embryo.
Eight of these clusters are of interest to the control of eve stripe 2, five that lie within the stripe
and three in the flanking inter-stripe regions. The five clusters within stripe 2 define the center,
the anterior and posterior borders, as well as a ventral portion of the stripe, suggesting that these
characteristic parts of stripe 2 may be different (see Figure 4.30b).

To validate the structure formed by the clusters against the target pattern, cluster colors are
mapped onto an expression surface of eve, in which height shows the level of expression (Fig-
ure 4.31). It can be seen that the five clusters fit closely to the expression pattern of the target
stripe 2.

Based on the average expression curves, the characteristic expression pattern of the potential
regulators in the eight clusters that are within and flanking stripe 2 are easily visible (see Fig-
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Figure 4.31: To validate the structure formed by the five clusters against the target, cluster col-
ors are mapped onto an expression surface of eve where surface height shows the level of eve
expression. The visualization shows that the clusters and the target stripe fit closely.

ure 4.30c, d). Here, hb is expressed at high levels in all clusters except those posterior of stripe 2,
consistent with its known role as an activator of stripe 2. Kr is expressed at high levels only pos-
terior of stripe 2 and gt is expressed at high levels only anterior of stripe 2, consistent with their
known roles as repressors that define the posterior and anterior borders of stripe 2, respectively.

Interestingly, the two clusters that form short ventral patches on eve stripe 2 (yellow and
blue) show significantly lower expression of hb than the two clusters that lie dorsally to them
(red and green) (see Figure 4.30c, d). This correlates with a lower level of eve expression in
this ventral margin (Figure 4.31) and suggests that this reduced expression may be the result of
lower activation by hb. hb is typically thought of as regulating gene expression only along the
anterior/posterior axis of the embryo. The cluster analysis suggests that it may also be able to
mediate differential transcription along the dorsal-ventral axis. However, if one were to add a
dorsal-ventral gene, such as snail (sna) (see Figure 3.3) into the analysis, it would be difficult to
distinguish if the ventral gap in eve stripe 2 resulted from direct inhibition by sna, if sna acted
via inhibiting ventral hb expression, or if all three expression patterns are parallel manifestations
of dorsal-ventral patterning systems, each acting separately. Thus, cluster analysis can be used
for identifying interesting correlations that might result from novel biological interactions or
phenomena, but the analyses should be confirmed by experimental data.

This case study illustrates that clustering the expression patterns of multiple regulators can
provide confirmation and additional insights into known regulatory interactions. It is likely that
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the extension of this strategy to less well-characterized systems will suggest potential regulatory
interactions that can then be tested by other means. Furthermore, the analysis described here —
based on a combination of data clustering and visualization — enables a more detailed and ac-
curate analysis of the regulation of gene expression patterns than a manual investigation process
based on the visualization alone (see Section 4.7.1).

4.7.5 Genetic Regulatory Network Modeling Using MATLAB

In Section 4.7.4 data clustering was used to identify the potential sub-patterns a regulatory net-
work composed of a set of genes could give rise to. In such an analysis data clustering does
not assume any particular genetic regulatory network model but seeks to identify all sub-patterns
any such network consiting of the given input factors could give rise to. This approach allows a
researcher to effectively test and define hypothesis about potential regulatory interactions. How-
ever, using this method it is not possible to investigate a specific model of a genetic regulatory
network.

To overcome this limitation one can use MATLAB to compute the expression pattern a spe-
cific genetic regulatory network would define. In Sections 4.7.1 and 4.7.4 an example model for
the second stripe of the expression pattern of eve was described with hb acting as an activator
(+) and Kr and gt acting as repressors (-). To test this model, MATLAB is used to compute the
derived expression pattern defined by the combination of these input factors.

Figure 4.32 illustrates the used genetic regulatory network model and the resulting derived
expression pattern. In particular the gene-weights of the shown model are based on an empirical,
user-defined model and may not be accurate. The user assigned larger weights to the suspected
inhibitors of eve stripe 2 to enforce sharp boundaries at the anterior and posterior edges of the
stripe. Furthermore, gt is assigned a larger weight because the anterior component of the gt
expression pattern largely overlaps with high hb expression — the suspected activator of eve
stripe 2 — whereas the expression pattern of Kr and hb do not overlap.

The resulting derived expression pattern shown in Figure 4.32 shows a distinct stripe of high
derived expression at approximately the same location as the target eve expression pattern. Using
the methods described in Section 4.7.2, the derived expression pattern is divided into its main
spatial components. The clusters describing the stripe feature in the derived expression pattern
are then mapped onto an expression surface of the target expression pattern (see Figure 4.33a).
It can be seen that the four clusters fit closely to the expression pattern of the target stripe 2. As
the cluster analysis indicated (see Section 4.7.4), the combination of gt, hb, and Kr may also
be able to reproduce the ventral gap of lower eve expression. The tested model shows a similar
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Figure 4.32: Empirical model for the regulation of eve stripe 2. The expression patterns of gt,
hb and Kr at stage 5:0-3% (left) are combined defining a new derived expression pattern (right).
At approximately the same location as eve stripe 2 a distinct stripe of high derived expression
appears.

Model

eve:5:9­25%a) b)

Figure 4.33: To validate the empirical model shown in Figure 4.32, the stripe-like feature in the
modeled expression pattern is extracted using data clustering and cluster splitting. Four clusters
are created, each representing a different expression level in the modeled pattern within the
according region (lilac/blue=medium , green/red=high). a) To validate the structure formed by
the five clusters agains the target, cluster colors are mapped onto an expression surface of eve
at stage 5:9-25%. The visualization shows that the clusters and the target stripe fit closely. b)
Scatter plot of eve and the model (m = hb−3∗gt−2∗Kr). The clusters define a characteristic
shape in the scatter plot indicating a possible correlation between the model and the target. The
outline of the clusters were added by hand to highlight their shape.
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behavior with high derived expression (red) appearing only dorsally of a patch of lower derived
expression (green) on the ventral surface of the embryo.

Figure 4.33b shows a scatter plot of eve and the modeled derived expression pattern illustrat-
ing the correlation between the model and the target pattern. The clusters defining the stripe in
the derived expression pattern form a characteristic shape in the scatter plot indicating that the
model and the target may be correlated.

4.7.6 Temporal Variation Analysis and Cluster Validation Using MATLAB

Quantification of the temporal change of an expression pattern based on visual inspection is in-
accurate. Furthermore, subtle temporal changes are not easily detected via visual comparison of
plots from different time steps. To aid in this process MATLAB can be used to compute differen-
tial expression patterns describing the change in expression between two time steps. Inspection
of differential patterns allows visual detection of even subtle changes in expression.

Figure 4.34 shows an example analysis of the temporal variation of the gene giant (gt) based
on differential expression patterns. By comparing the gt expression pattern at six time cohorts
within one hour the pattern can be seen to change (see Figure 4.34 top). Subtle changes be-
tween consecutive time steps are however not easily identified. Inspection of the differential
expression patterns of gt computed using MATLAB and visualized in PointCloudXplore (PCX)
enables a much more detailed analysis of the temporal variation of the gt expression pattern (see
Figure 4.34 bottom). For example, while the pattern of gt at stage 5 : [0−3%] and 5 : [4−8%] ap-

­­­­­

0% 100%3% 8% 25% 50% 75%

Figure 4.34: Differential change of the expression of gt over time. Top: Expression pattern of gt
at six time steps during stage 5 of embryo development. Bottom: Differential change between the
consecutive time steps. Color indicates positive (green) and negative (red) change in expression.
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Figure 4.35: Expression surface of the differential expression pattern gtdi f f = gt[5:75−100%]−
gt[5:0−3%]. colored according to 17 clusters describing the temporal variation of the gt expression
pattern (see also Section 4.7.3). Two clusters that did not show any significant expression of gt
at all times are shown in black. The clusters identify the main temporal changes of the pattern
indicating that the clustering result is valid.

pear to be similar the differential pattern reveals significant changes in expression in the anterior
as well as posterior expression domain of gt.

In Section 4.7.3 clustering was used to characterize the temporal variation of the the gene
gt. A valid temporal clustering should capture the temporal changes of the input pattern well.
Figure 4.35 shows the results of a temporal clustering of the gene gt mapped onto an expression
surface describing the difference in gt expression between the first and last time step. The clusters
coincide with the main characteristic features (hills/valleys) of the differential expression pattern
of gt indicating that the clustering result is valid.

Besides for validation of temporal clusterings, differential patterns can also be used in the
clustering itself. A temporal clustering based on the measured patterns of a gene allows the
identification of cells that show similar expression of a gene over time. By clustering cells based
on differential patterns instead, groups of cells that undergo similar changes in expression over
time can be identified. Using both, differential and original expression patterns in the same
clustering promises to improve the quality of a temporal clustering experiment.
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Chapter 5

Visualization and Analysis of Laser
Wakefield Particle Acceleration Data

Analysis and knowledge discovery from large, complex, multi-variate laser wakefield particle
accelerator (LWFA) simulation data is a challenging task. One main feature researchers are in-
terested in are beams of high-energy particles formed during the coarse of LWFA simulations. To
enable efficient and accurate analysis of these particle beams, dedicated mechanisms for selection
and detection of particle beams are needed. Furthermore, to support analysis of selected particle
bunches of interest effective visualization methods are required. To address these challenges,
this work presents a novel framework for knowledge discovery from LWFA simulations based
on state-of-the-art data management, high-performance visual data exploration, and automatic
data analysis.

To enable visual analysis of particle beams in extremely large and complex scientific data
this work describes the integration of the advanced visualization system VisIt and state-of-the-
art data management using FastBit. This approach, while applied here to accelerator science, is
generally applicable to a broad set of science applications, and is implemented in a production-
quality visual data analysis infrastructure.

To enable more efficient and accurate analysis of particle beams and to support analysis of a
larger number of datasets, this work describes two novel methods for automatic beam analysis.
The automatic beam detection algorithm is based on a combination of bunch lifetime estimation
and fuzzy clustering and is aimed at identification of the highest-energy particle bunch in a
simulation. The automatic beam path analysis on the other hand has the goal to enable efficient
temporal classification of multiple particle bunches based on the complete temporal history of
the particles that form them. Automatic analysis of particle beams based on temporal particle
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paths enables accurate classification of particle beams and supports analysis of the temporal
beam evolution.

As high-level novel scientific contributions of this work this chapter discusses:

(i) A novel framework for high-performance visual data exploration of extremely large data

(ii) Automatic beam detection; a novel approach for automatic detection of the highest-energy
particle bunch based on bunch lifetime analysis and fuzzy clustering

(iii) Automatic beam path analysis; a novel approach for automatic detection and analysis of
multiple particle beams based on the complete temporal path of the particles that form
them

(iv) Integration of the automatic analysis with visualization to enable efficient analysis of even
extremely large 3D particle datasets

(v) The use of the proposed framework to address relevant questions, such as, (a) detection
and definition of particle beams, (b) analysis of the formation and acceleration of parti-
cle beams, (c) investigation of the quality of particle beams, and (d) comparison of the
behavior and quality of multiple particle beams.

5.1 Problem

Laser wakefield accelerators (LWFAs) promise to be a new compact source of high-energy parti-
cles and radiation, with wide applications from medicine to physics. Development and optimiza-
tion of LWFAs is challenging task. Laboratory experiments are expensive and require careful
planning. Furthermore, it is in practice not possible to record the complete evolution of LWFA
experiments but only to measure their outcome, such as, the produced radiation or particle beam.
Physicists, therefore, model the acceleration process computationally via particle-in-cell (PIC)
simulations (see Section 3.2) to gain insight into the complex physical processes in LWFAs.

LWFA simulations model the effects of the interaction between a laser pulse and a hydrogen
plasma. Similar to the wake of a boat, the radiation pressure of the laser pulse displaces the elec-
trons in the plasma. Together with the space-charge restoring force of the ions, this displacement
drives a wave (wake) in the plasma. If the wake has a high enough amplitude then electrons
can become trapped and accelerated by the plasma wave, and eventually decelerate again as they
outrun the wake.
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Analysis of LWFA simulations is a challenging task; with the produced datasets being: (i)
extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-
dimensional. Due to the large amount of memory required to save all the information of a single
timestep, only a small subset of all simulated timesteps is actually saved to file. In contrast to
the actual simulation, the temporal resolution of the stored data may, therefore, not be sufficient
to resolve wave frequencies. Even when only a small number of timesteps is saved (≈ 30), the
produced data may still be extremely large. In the case of 3D simulations the total size of a single
simulation dataset is usually in the order of several terabytes (TBs). The amount of data created
by a single simulation run depends on various parameters, e.g., (i) the spatial resolution of the
simulation (i.e., number of particles per cell and resolution of the grid used in the simulation), (ii)
the temporal resolution of the data (i.e., how many timesteps are written to file), and (iii) size of
the simulation window (i.e., the area around the laser pulse captured by the simulation). All these
are user-defined parameters; with increasing performance of supercomputers and decreasing cost
for storing simulation results, the size of datasets is expected to increase even further in future.
Furthermore, LWFA simulation data is high-dimensional and heterogeneous with, e.g., electric
and magnetic field data being defined on a grid and particles being scattered data.

Methods developed for the analysis of LWFA simulation data must therefore be efficient
and deal robustly with data of varying temporal and spatial resolution. The analysis should
furthermore be flexible and allow for incorporation of user knowledge. In the context of high-
end numerical simulations it is crucial that the visual analysis does not become the bottleneck for
simulation output, hence, the visualization should require a minimum of user intervention [132].
With researchers producing increasingly large collections of simulation data the need arises for
automating the most time-consuming steps of the data analysis process.

One main feature physicists are interest in are beams of highly accelerated particles formed
during the coarse of a simulation. In order to gain a deeper understanding of the complex ac-
celeration process, an effective analysis needs to address complex questions such as: (i) which
particles become accelerated; (ii) how are particles accelerated, and (iii) how was the beam of
highly accelerated particles formed and how did it evolve [106]. Furthermore, the analysis needs
to support: (iv) investigation of the quality of particle beams, and (v) comparison of the behavior
and quality of multiple particle beams. To effectively address these question the analysis must
support accurate and efficient selection of particle beams and fast tracing of selected features
(i.e., groups of particles) through time.

The remaining parts of this chapter are structured as follows. Section 5.2 first describes
the analysis pipeline currently employed by accelerator scientists at the LOASIS [111] program
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at LBNL. The proposed novel framework for knowledge discovery from LWFA simulations is
introduced in Section 5.3. Afterwards, the different parts of the proposed analysis framework are
described in detail in Sections 5.4 to 5.7. This chapter concludes with a presentation of results
and applications of the proposed analysis framework (see Section 5.8).

5.2 State of the Art: Analysis of Laser Wakefield Particle Ac-
celeration Data

Before describing the proposed framework for knowledge discovery from LWFA simulations
(see Section 5.3 to 5.7), this section introduces the data generation and analysis pipeline currently
employed by scientists at the Laser Optics and Acceleration System Integrated Studies (LOASIS)
program headed by Dr. Wim Leemans. LOASIS is a core program within the Accelerator and
Fusion Research Division (AFRD) at the Lawrence Berkeley National Laboratory (LBNL). The
work presented in this chapter was conducted in collaboration with researchers from the LOASIS
program.

Figure 5.1 provides an overview of the data generation and analysis pipeline employed by
physicist at the LOASIS program. Simulation, theoretical study of the fundamental physics, and
laboratory experiments are used together to enable detailed study and development of LWFAs.
Theoretical study is essential to enable computational modeling of experiments and provides
understanding of the fundamental physics of plasma-based acceleration. Simulations allow the
study of phenomena that cannot be recorded in real-world experiments or accessed by theory.
Laboratory experiments on the other hand are important to validate and verify theoretical and
computational models, identify problems, and proof that a particular LWFA design is functional
and practical.

In the context of todays LWFA experiments, simulations are essential for the understanding
of the fundamental physics of plasma-based acceleration, understanding of the processes and
results observed in experiments, as well as for improvement of experiments. With increasing ac-
curacy and reliability of computational models and decreasing simulation costs, simulation also
becomes increasingly important for planning of experiments and testing of new accelerator mod-
els. Simulation is, therefore, becoming an increasingly important tool to identify good physical
parameters for experiments as well as to build new hypothesis to be verified via experimentation.
Simulation also promises to be an invaluable tool in the design process of new accelerators al-
lowing researchers to test and validate different designs, hence, reducing risk (cost and safety) as
well as enabling improvement of the accelerator before construction. In laboratory experiments it
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Figure 5.1: Laser wakefield particle acceleration data generation and analysis pipeline. Simu-
lation, theoretical study, and laboratory experiments are used together to enable detailed study
and development of LWFAs. Both, simulation and experiments, are linked via data analysis and
theory enabling improvement of experiments based on simulation results and vice versa. The
example data analysis pipeline shown here refers to the analysis of the simulation data.

is usually not possible to capture the whole evolution of an experiment but only its outcome, e.g.,
via measurements of the produced radiation or particle beam. Furthermore, complex processes,
such as, (a) nonlinear plasma response, (b) beam trapping, (c) self-consistent laser propagation,
and (d) beam acceleration, are not readily accessible to analytic theory. Simulation enables in
silico study of these complex physical phenomena greatly improving the understanding of the
fundamental physics of laser wakefield acceleration.

Laboratory testing and experimentation is the main tool for verification and validation of sim-
ulation results. Numerical simulations of LWFAs can only approximate the underlying physical
phenomena relevant for particle acceleration and therefore require verification and validation.
Based on the findings in laboratory experimentation, hypotheses derived from simulation are
verified, simulation algorithms are validated and improved, as well as potential errors and prob-
lems are identified. Furthermore, not all physical phenomena relevant for the study of LWFAs are
accessible to simulation today and, hence, need to be studied through experimentation (see Sec-
tion 3.2). Laboratory experiments are also essential to investigate the effectiveness of a particular
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LWFA design for use in real-world applications, e.g., to build a particle collider.
The ultimate goal of LWFA research is to develop an LWFA that produces a “Dream Beam,”

i.e., a high-energy particle beam with very low energy spread (see Figure 5.1). Besides just
proof of concept, the accelerator should also be reliable, i.e., predictably produce high-quality
beams. To achieve this goal, many iterations through simulation, theoretical study, and laboratory
experimentation are necessary to optimize physical parameters and the accelerator design, to
identify problems, and gain insight into the complex acceleration process. Similar to laboratory
experiments, the in silico analysis based on simulation is itself an iterative process in which
simulation parameters are iteratively refined and new simulations executed.

Data analysis is essential for the understanding of LWFA simulation and experimental data.
Theoretical study and data analyses also define the main links between the simulation and labo-
ratory experiments enabling improvement of lab experiments based on simulation and vice versa.
In particular in the context of high-end numerical simulations, it is crucial that the visual analysis
does not become the bottleneck for simulation output and knowledge discovery.

Analysis of large, complex LWFA simulation dataset is a challenging task. Researchers at
the LOASIS program currently use IDL-based [129] 1 visualization and analysis scripts for data
analysis. After completion of a simulation, researchers execute a set of these scripts to create
different visualizations (usually six plots per image) for each timestep of the simulation. These
images are then combined to make animations of the whole time series. Figure 5.2 shows an
example image of a single timestep of such an animation consisting of six different plots. Using
Perl scripts, scientists typically create several different sets of animations for each simulation,
each showing a different set of plots of the data. The data is commonly displayed using various
types of two-dimensional plots. The most common types of plots used for data display are 1D
or 2D density plots (histograms), iso-contour plots, and pseudocolor plots. In particular for
investigation of 3D simulations scientist are now also starting to VisIt. Another main analysis
tool, besides visual investigation of the data, is statistical analysis. Using dedicated scripts,
researchers derive a series of statistical measurements from the simulation data such as average,
root-mean-square, and standard deviation values of different variables, measurements of the laser
energy and many more. The combination of visual inspection of the data and statistical analysis
allows researchers to effectively study the general evolution of simulations.

In order to analyze particle beams and their temporal history, a scientist investigates the ani-
mations and static views of a simulation to: (i) identify an appropriate timestep at which a beam
of interest exists, and (ii) identify thresholds to be able to extract the relevant particles from the

1IDL = Interactive Data Language. IDL is an array-oriented programming language with various features for
mathematical analysis and graphical display and is commonly used for data analysis.
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Figure 5.2: Example showing a single frame of a movie consisting of a set of standard plots used
by laser wakefield accelerator scientists for data understanding and analysis. Top from left to
right: (a) Plot of the laser envelope, (b) Plot of the plasma density in physical space (x,y), and
(c) Plot of beam phase space (x, px). Bottom from left to right: (d) Beam scatter plot of (y, px)
space, (e) Plot of the beam momentum-divergence spectrum, and (f) Plot of the beam spectrum.
(Image courtesy of Cameron G. R. Geddes)

data. Commonly, a single threshold in px is used to define the beam. The according parameters
— timestep and threshold(s) — serve as input to yet another script for particle tracing. The trac-
ing script, implemented in IDL, first identifies the IDs of the particles of interest. Afterwards,
the script performs a sequential scan through the data to extract the relevant particles from each
timestep. Particle tracing is a time-consuming process and, hence, impractical as an every-day
analysis tool. Using the described scripts it takes, e.g., ≈2.5 hours to track 250 particles for a
small 5GB dataset. Furthermore, owing to IDL limitations, the scripts cannot load all necessary
data for extremely large 3D datasets but require incremental data access, which in turn leads to a
further decrease in performance.
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Having introduced the problem and general analysis process, the next section now provides
an overview of the proposed novel framework for knowledge discovery from LWFA simulation
data. Afterwards the different parts of the framework are described in detail in the then following
sections.

5.3 Overview

While statistical analysis and visual inspection provide effective means for understanding the
general characteristics of a simulation, the approach is limited in particular with respect to the
analysis of specific features of the data. As described earlier, in the context of laser wakefield
acceleration, scientist are, e.g., interested in particle beams — i.e., compact bunches of highly
accelerated particles — formed during the coarse of a simulation. Such particle beams consti-
tute small features of the data. Definition and analysis of particle beams based on static plots or
animations is time-consuming, non-interactive, and error-prone. To overcome these limitations
this work describes a novel approach towards visual exploration of extremely large scientific
data. Using this new approach a researcher can interactively specify and trace particles over time
leading to a more responsive and accurate data analysis process. Using the proposed system a
user receives immediate feedback about important characteristics of a selection enabling fast val-
idation and hence more accurate selection of data features. Also, the proposed approach allows
a user to more easily define selections based on multiple variables as well as information from
different timesteps enabling not only more accurate selection but also selection of more complex
features than possible when using only a single threshold in px. Using efficient data management,
fast selection as well as fast tracing of particles over time becomes possible. With the increased
performance, particle tracing becomes practical as an every-day analysis tool. Scientists can,
hence, more easily trace multiple features over time, refine features based on information from
the tracing, and repeat the tracing several times. While manual feature selection and detection
allows for detailed analysis of particle beams it may be impractical for the analysis of a large
collection of datasets due to the substantial manual input that is required. To assist researchers
in the analysis of an increasing number of datasets this work also introduces several methods for
automatic detection and analysis of particles beams.

Figure 5.3 provides an overview of the proposed framework for knowledge discovery from
laser wakefield accelerator (LWFA) simulation data. LWFA simulation datasets are extremely
large — in the order of several terabyte (TB) — and are expected to become even larger in
future. As mentioned earlier, in practice a researcher is often only interested in a small subset of
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Figure 5.3: Analysis framework for knowledge discovery from laser wakefield particle accelera-
tor simulation data.

the data, e.g., in this case beams of highly accelerated particles. Using efficient data management
based on HDF52, H5Part3 and FastBit4 efficient analysis and access of selected data portions of
interest becomes possible.

The state-of-the-art, parallel visualization and graphical analysis system VisIt5 is used as
main tool for visual exploration of the data. VisIt contains a rich set of visualizations ranging
from information visualization views, such as scatter-plots and parallel coordinates, to advanced
scientific visualizations, such as particle, volume, or contour plots. VisIt also integrates several
data analysis tools and supports, e.g., also data analysis based on derived quantities via the con-
cept of so called expressions. Within VisIt different visualizations and views can be linked in
various ways, e.g., by synchronizing data operators, or locking time and camera view.

By integrating FastBit and VisIt, this work enables interactive analysis of extremely large
particle datasets. Using FastBit, VisIt can efficiently evaluate data queries and extract data por-

2HDF5 is developed by the HDF5Group and is available online at: http://www.hdfgroup.org/HDF5/.
HDF5 is also available directly as part of the VisIt installation.

3H5Part is developed by the Visualization Group at LBNL and is available online at:http://www-vis.lbl.
gov/Research/AcceleratorSAPP/ H5Part is now also available directly as part of the VisIt installation.

4FastBit is available online at: http://sdm.lbl.gov/fastbit/. FastBit is now also directly available as
part of the VisIt installation.

5VisIt is developed by the VisIt development team and is available online at: http://www.llnl.gov/
visit/
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tions of interest from the raw data based on multi-dimensional threshold and/or ID-based queries
(see Section 5.4.3). To provide the user with an effective interface for performing these data
selection operations this work describes several new extension to histogram-based parallel coor-
dinates (see Section 5.4.2). Using the concept of ID-based queries, efficient tracing of particle
subsets over time becomes possible(see Section 5.4.3.2).

While interactive selection of particle beams is effective it requires substantial manual input
from the user and may, hence, be time-consuming. Automating the most time-consuming parts
of the data analysis process promises to support a more focused and efficient analysis process en-
abling the analysis of large collections of LWFA simulations. To assist researchers in the analysis
of a large number of datasets this work presents, (i) automatic beam detection, a method aimed
at identifying the highest energy particle bunch in a LWFA simulation, and, (ii) automatic beam
path analysis, a method aimed at identification and comparison of multiple particle bunches.

Automatic beam detection, uses a combination of a bunch lifetime analysis based on a particle
density estimation and fuzzy clustering to estimate spatially confined particle beams. Automat-
ing the detection of the highest energy beam promises a more focused and effective analysis
process by allowing a user to concentrate on the main outcome of a simulation without having
to manually specify the main feature of interest. The described method is implemented as a
stand-alone application in R 6.

Automatic beam path analysis, on the other hand, is aimed at detection of possibly many
particle bunches formed during the coarse of a simulation and classification of their temporal
behavior. The goal is to enable a user to: (i) more quickly and accurately define particle bunches,
(ii) more effectively analyze the temporal evolution of particle bunches, and to (iii) enable com-
parison of different bunches. The proposed analysis pipeline consists of several different steps.
First, each timestep is analyzed independently to detect the different particle bunches. After-
wards the method derives for each main particle bunch a reference path describing its temporal
evolution. Based on the distance between a particle’s path and the reference path the user can
then accurately and efficiently identify the particles that form a bunch. The beam path analysis
is implemented as a stand-alone application in C++ using FastBit to accelerate data access.

Integration of the analysis with the visualization is done in multiple ways. The automatic
beam detection directly employs the visualization capabilities of R for investigation of analysis
results. The beam path analysis then creates a set of particle path files describing the classification
and temporal behavior of particle bunches. The user can access and visualize these datafiles
directly from within VisIt and investigate analysis results in the context of the raw data. Based

6R is available online at: http://www.r-project.org/
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on the analysis results the algorithm (or the user) may then define so called named selections
describing which particles form a bunch. Name selections are a new concept in VisIt that allows
for persistent selection of particles based on their identifier (ID). In VisIt a user can apply named
selections defined based on the automatic analysis to the original data for further investigation.

The main, high-level contributions of the work discussed in this chapter are:

(i) Section 5.4 describes a novel approach for visual exploration of extremely large data sets
based on the integration of FastBit, VisIt, and histogram-based parallel coordinates.

(ii) A novel algorithm for automatic detection of the highest-energy particle bunch based on
bunch lifetime estimation and fuzzy clustering is presented in Section 5.5.

(iii) Section 5.6 then describes automatic beam path analysis; a novel approach towards detec-
tion and analysis of multiple particle bunches in laser wakefield accelerator simulations
based on the analysis of particle paths.

(iv) The integration of the analysis with the visualization is discussed in Section 5.7.

(v) This chapter concludes with a presentation of results in which the proposed framework
is used to analyze particle beams in laser wakefield accelerator simulation data (see Sec-
tion 5.8). The presented analysis illustrates how a user can: (a) define particle bunches
of interest, (b) analyze the formation and temporal evolution of a particle bunch, and (c)
investigate and compare the quality of multiple particle bunches.

In the context of the work on visual exploration of extremely large particle data the specific new
contributions of this work are:

(i) A novel approach for fast generation of histogram-based parallel coordinates is presented
in Section 5.4.2.

(ii) To enable fast selection and tracing of particles over time this work discusses the inte-
gration of the visualization system VisIt and the index/query system FastBit. (see Sec-
tion 5.4.1 and 5.4.3).

(iii) The performance of the different parts of the system (i.e., histogram computation, data
selection, and particle tracing) is examined showing fast response times and scalability of
the proposed approach.

In the context of the method for automatic beam detection (see Section 5.5), the specific new
contributions of this work are:
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(i) A new method for identification of features of high particle density indicating the location
of potential particle beams in space as well as their lifetime is described (see Section 5.5.2
and 5.5.3).

(ii) The application of fuzzy clustering for detection of potential particle beams at single
timesteps is introduced (see Section 5.5.4).

(iii) By combining the results from the bunch lifetime analysis and fuzzy clustering this work
enables the estimation of the highest-energy beam formed during the course of a LWFA
simulation (see Section 5.5.5).

(iv) Finally, the proposed algorithm is validated using four different simulation datasets illus-
trating the effectiveness of the proposed approach (see Section 5.5.6).

The specific new contributions of the work about automatic beam path analysis of laser wakefield
acceleration data (see Section 5.6) are:

(i) A novel pipeline for automatic detection and analysis of particle bunches in laser wakefield
particle accelerator simulations is described. As part of the pipeline the following new
methods are introduced:

a) An efficient method for detection of particle bunches at single timesteps of a simula-
tion (see Section 5.6.4).

b) A method for combining particle bunch classifications from different timesteps to
define a single consolidated description of multiple particle bunches detected in a
single simulation (see Section 5.6.5).

c) A novel method for classification of particle bunches based on the temporal paths
of the particles that form them. In this process the analysis also derives additional
information about the different temporal phases of particle bunches, e.g., when was a
bunch formed or accelerated (see Section 5.6.6).

(ii) To achieve good performance the algorithm makes use of FastBit for efficient data access
and particle tracing. In this context, this thesis introduces new functions for computation
of three-dimensional (3D) conditional histograms that were specifically developed for this
work and integrated into FastBit.

(iii) The proposed method is applied to a variety of 2D as well as 3D particle data sets to
demonstrate its validity and effectiveness.

(iv) Section 5.6.8 examines the performance of the proposed analysis pipeline and its different
components.
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5.4 High-performance Multivariate Visual Data Exploration

The work described in this section focuses on combining and extending two different but com-
plementary technologies aimed at enabling rapid, interactive visual data exploration and analysis
of laser wakefield particle acceleration data. While applied here to accelerator science, the de-
scribed approach is generally applicable to a broad set of science applications and is implemented
in a production-quality visual data analysis infrastructure.

To support highly effective visual data exploration, knowledge discovery and hypothesis test-
ing, this work adapts and extends the concept of parallel coordinates, in particular binned or
histogram-based parallel coordinates, for use with high-performance query-driven visualization
of very large data. In the context of visual data exploration and hypothesis testing, the parallel
coordinates display and interaction mechanism serves multiple purposes. First, it acts as a vehi-
cle for visual information display. Second, it serves as the basis for the interactive construction
of compound Boolean data range queries. These queries form the basis for subsequent drill down
or data mining operations.

To accelerate data mining, this work leverage state-of-the-art index/query technology using
FastBit to quickly mine for data of interest as well as to quickly generate multi-dimensional
histograms used as the basis for rendering of the aforementioned parallel coordinates. This
combination provides the ability for rapid, multi-dimensional visual data exploration. All these
methods have been integrated into the advanced visualization system VisIt.

One main scientific impact of this work is that it vastly reduces the duty cycle in visual data
exploration and mining. In the past, accelerator scientists performed the tracing of particles over
time using scripts that performed a search at each timestep for a set of particles. The runtime for
this operation was on the order of ours. Using the proposed implementation, the runtime of the
same operation is reduced from hours to seconds.

The specific new contributions of this work are:

(i) A novel approach for fast generation of histogram-based parallel coordinates is presented
(see Section 5.4.2).

(ii) Via integration of the visualization system VisIt and the index/query system FastBit, this
work enables fast selection and tracing of particle bunches over time (see Section 5.4.1
and 5.4.3).

(iii) The typical workflow for visual exploration of particle accelerator data based on the pro-
posed system is described (see Section 5.4.4). A detailed use case is then presented later,
in which the proposed system is used to solve a challenging scientific data understanding
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problem in accelerator science (see Section 5.8.1).

(iv) The performance of the proposed approach is examined using a modern HPC7. platform
and a very large (≈1TB) complex laser wakefield particle accelerator simulation dataset

(v) With respect to VisIt this work describes in addition the following new extensions:

a) Named selections; a novel approach towards ID based selection in VisIt (see Sec-
tion 5.4.3.1).

b) Persistent Particles; a new operator for efficient particle tracing in VisIt (see Sec-
tion 5.4.3.2).

5.4.1 System Design

Figure 5.4 shows a high-level view of the different components and data flow of the proposed
system for high-performance visual exploration of laser wakefield simulations based on VisIt and
FastBit. Raw scientific data, which is produced by simulation or experiment, is augmented by
the computation of indexing data. Here, this step is performed outside the visual data analysis
application VisIt as a one-time preprocessing. The here described implementation uses FastBit
[51] for creating index structures. The data sizes are described in more detail later in Section
5.8.1.

After the one-time preprocessing step, VisIt uses FastBit at the data-loading portion of the
pipeline to quickly compute histograms and to perform high-performance data subsetting/selection
based upon multi-variate thresholds and/or particle identifiers (IDs) (Section 5.4.3). The his-
tograms serve as the basis for visual presentation of full-resolution and subset views of data
vis-a-vis parallel coordinates (Section 5.4.2). In the described implementation, the computa-
tional complexity of rendering parallel coordinates plots – both context and focus views – is a
function of histogram resolution, not the size of the underlying data. The approach is, therefore,
particularly well suited for application to extremely large data such as laser wakefield particle
accelerator simulations (see Section 5.4.2).

In the context of this work, parallel coordinates serve as the main vehicle for steering data
mining operations (see Section 5.4.2). Using parallel coordinates a user can define multi-dimensional
range queries while receiving immediate feedback about characteristic properties of the selection.

Once a user has identified a subset of particles of interest VisIt can store the selection in
the form of a Named Selection. Named selections define yet another type of query of the form

7HPC = High-performance computing; The term HPC refers to the use of supercomputers and computer clusters
to solve advanced computation problems. In the context of this work the massively parallel processing (MPP) system
Franklin at NERSC is used as reference HPC platform
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Figure 5.4: Overview of the major components and data flow paths in the proposed system for
high-performance visual data exploration of extremely large data. Large-scale scientific data and
indexing metadata are input via a parallel I/O layer, which allows the system to achieve high lev-
els of performance and parallel efficiency. VisIt uses the FastBit API at the I/O layer to perform
parallel computation of multidimensional histograms as well as data subsetting. Results of those
queries are then used downstream in the visualization application for presenting information to
the user and in support of interactive data mining actions.

ID ∈ (id1, id2, ..idn) (a so called ID-based or Equality-query) (see Section 5.4.2.4). Like range
queries, FastBit is also used to accelerate ID-based queries. ID-based queries allow the same
particle subset to be extracted from different timesteps. By issuing a series of ID queries over
the complete time series, efficient particle tracing — i.e., computation of the temporal paths of
particles — becomes possible (see Section 5.4.3.2).

5.4.2 Histogram-based Parallel Coordinates

Parallel coordinates provide a very effective interface for defining multi-dimensional queries
based on thresholding. Using sliders attached to each axis of the parallel coordinates plot, a
user defines range thresholds in each displayed dimension. By rendering the user-selected data
subset (the focus view) in front of a parallel coordinates plot created from the entire data set (the
context view), the user receives immediate feedback about general properties of the selection.
Data outliers stand out visually as single or small groups of lines diverging from the main data
trends. Data trends appear as dense groups of lines (here indicated by bright colored bins). A
quick visual comparison of the focus and context views helps to convey understanding about
similarities and differences between the two (see, e.g., Figure 5.8).
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a) b)

c) d)

Figure 5.5: Comparison of different parallel coordinate renderings of a subset of a 3D laser
wakefield particle acceleration dataset consisting of 256,463 data records and 7 data dimensions.
a) Traditional line based parallel coordinates. b) High-resolution, histogram-based parallel co-
ordinates with 700 bins per data dimension. c) Same as in b, but using a lower gamma value g
defining the basic brightness of bins. d) Same rendering as in b but using only 80 bins per data
dimension. When comparing a and b, one can see that the histogram-based rendering reveals
many more details when dealing with a large number of data records. As illustrated in c, by
lowering gamma the user can then reduce the brightness of the plot and even remove sparse bins,
thereby producing a plot that focuses on the main, dense features of the data. By varying the
number of bins the user can then create renderings at different levels of detail.

In practice, parallel coordinates have disadvantages when applied to very large datasets. First,
each data record is represented with a single polyline that connects each of the parallel coordi-
nates axes. As data size increases, the plot becomes more cluttered and difficult to interpret.
Also, data records drawn later will occlude information provided by data records drawn earlier.
Even worse, polyline-based parallel coordinates have a computational and rendering complexity
that is proportional to the size of the dataset. As data sizes grow ever larger, these problems
become intractable.
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To address these problems, this work employs an efficient rendering technique based on two-
dimensional (2D) histograms. Rather than viewing the parallel coordinates plot as a collection
of polylines, one per data record, VisIt approaches the rendering by considering instead the rela-
tionships of all data records between pairs of parallel coordinate axes. That relationship can be
discretized as a 2D histogram and then later rendered. This idea was introduced in earlier work
by Novotný and Hauser [26]. As illustrated in Figure 5.6, VisIt creates a parallel coordinates
representation based on 2D histograms by drawing one quadrilateral per non-empty bin, where
each quadrilateral connects two data ranges between neighboring axes. As illustrated in Fig-
ure 5.5(a,b), histogram-based rendering overcomes the limitations of polyline-based rendering
and reveals much more data detail when dealing with a large number of data records.

In the following, Sections 5.4.2.1 and 5.4.2.2 first describe how to quickly compute 2D his-
tograms (see Section 5.4.2.1) and how to use them to efficiently render parallel coordinates (see
Section 5.4.2.2). Having introduced the principle of histogram-based parallel coordinates, Sec-
tion 5.4.2.3 then compares the use of regular (equal width) and adaptive (equal weight) binned 2D
histograms in the context of rendering parallel coordinate views. Afterwards, VisIt’s graphical
user interface (GUI) of parallel coordinates is described in Section 5.4.2.4.

5.4.2.1 Computing Histograms

In this work, the computation of 2D histograms is implemented at the data I/O stage of VisIt:
2D histograms are computed directly in the file reader, which leverages FastBit for index/query
operations as well as histogram computation. This approach has several major benefits within
the context of very large, high performance visual data analysis. First, instead of having to read
the entire data set and transfer it to the plot to create a rendered image, the internal data transfer
and processing is limited to a set of 2D histograms, which are very small when compared to
the size of the source data. Second, data I/O is limited to those portions needed for computing
the current 2D histogram, i.e., information on the relevant particles in two data dimensions.
After computing a 2D histogram, the system can then discard the data the loader may have read
to compute the histogram, thus decreasing the memory footprint. An added advantage is the
fact that all the computationally and I/O intensive work is done at the beginning of the parallel
execution pipeline rather then at the end in the plot. Third, having the histogram computation be
part of the file reader allows VisIt to perform such computation at the same stage of processing as
parallel I/O, which is one of the most expensive operations in visual data analysis. This approach
provides the ability to achieve excellent parallel performance, as described later in Section 5.4.5.
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Figure 5.6: Illustration showing the rendering of parallel coordinates based on regularly (a) and
adaptively binned histograms (b). By using higher resolution in areas of extremely high density,
an adaptive binning is able to represent the general data trends much more accurately.

5.4.2.2 Using Histograms to Render Parallel Coordinates Plots

When using 2D histograms for rendering parallel coordinates plots, the renderer has access to
additional information that is not present when using traditional polyline-based methods. In
particular, the system knows prior to the rendering the number of records contributing to specific
variable ranges between parallel axes. This extra information allows the optimization of various
aspects of the data visualization to convey more information to the user. VisIt uses brightness, for
example, to reflect the number of records per bin, which leads to improved visual presentation.
Assuming that denser regions are more important than sparse regions, VisIt renders bins in back-
to-front order with respect to the number of records per bin h(i, j). Figure 5.5(a,b) shows a direct
comparison of the same data once rendered using traditional polyline-based parallel coordinates
and once using the proposed histogram-based rendering approach.

In order to further improve the rendering, the user can define a gamma value g defining the
overall brightness of the plot. As illustrated in Figure 5.5c, a lower g value reduces the bright-
ness of the plot, or even remove sparse bins from the rendering, thereby producing a much less
cluttered visualization that focuses attention on the main, dense data features. Since the pro-
posed method is not constrained by a fixed histogram bin resolution, VisIt can easily recompute
histograms at higher resolution, or, using adaptive binning, to produce visualizations at varying
levels of detail. This feature is important for providing smooth drill-down into finer levels of
detail in very large datasets and represents one of the major improvements of VisIt’s approach
over previous work in which histograms are pre-computed. Figure 5.5d, shows as an example the
same rendering as in Figure 5.5b, but using just 80 bins per data dimension. Another example is
also provided later in Figure 5.7.

Previous histogram-based parallel coordinates work used histogram-based rendering for the
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context view and traditional line-based rendering for the focus view. One limitation of this ap-
proach is that the focus view may consist of a very large number of data records. VisIt overcomes
this limitation by using a histogram-based approach for both the context and focus views. This
approach is feasible given the rapid rate at which FastBit can recompute new conditional 2D
histograms as explained in Section 5.4.5. The focus view is rendered on top of the context view
using a different color to make the focus more easily distinguishable. This approach has the
further advantage that it allows VisIt to render both, the focus and the context, at different levels
of detail simply by specifying the number of bins per variable. Typically a user specifies lower-
resolution histograms for the context view and very high-resolution histograms for the focus
view, thereby supporting a high quality and smooth visual drill-down into the focus view.

Similar to rendering the focus on top of the context, VisIt can also create a rendering of
multiple timesteps in one parallel coordinates plot. To do so, the user assigns a unique color to
each timestep and the system then renders the individual plots — each representing one timestep
— on top of one other. As described later in Section 5.8.1, such a rendering can be helpful to
identify the general temporal changes in the data. In practice, temporal parallel coordinates are
most useful when analyzing some characteristic subset of the data.

5.4.2.3 Adaptive and Uniform Histogram Binning

Regular histograms, with uniform, equal-sized bins, are well suited for high resolution renderings
but have substantial disadvantages when creating low level-of-detail views where the number of
bins per variable is much smaller than the number of pixels per parallel axis. In such a case each
bin may cover regions of varying data density, e.g., large areas of a bin may contain only few data
records while other areas contain many. This work describes another improvement over previous
work, namely FastBit can compute and VisIt render with adaptive, rather than uniform histogram
bins. With adaptive binning, each bin of the histogram contains approximately the same number
of data records, which may offer advantages in certain situations [146].

As an example, Figure 5.7 shows a comparison of data visualized using 32x32 uniform versus
adaptive histogram bins. In comparison to a uniform binning, adaptive binning discards some
features in sparse areas of the data to preserve more information in dense areas. Adaptively
binned histograms may ease comparison of selections with general data trends. As illustrated in
Figure 5.6, when using adaptively binned histograms, a more generalized rendering is required
to allow rectangles to connect different sized ranges on neighboring axes. Also, since the area
a(i, j) covered by each bin is no longer constant, VisIt needs to compute the brightness of each
bin, and then assign rendering order based on the actual data density per bin p(i, j) = h(i, j)

a(i, j) , rather
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Figure 5.7: Histogram-based parallel coordinates using 32x32 regularly binned histograms (a)
and adaptively histograms (b). Compared to regular binning, the adaptive binning preserves more
details in dense areas while discarding some details in sparse areas of the data. An adaptively
binned plot may ease comparison of selections (red) with structures present in the data in low
level of detail views.

than based on h(i, j) directly. Uniformly binned histograms are in general very well suited for
high resolution renderings of the data while adaptively binned histograms may be advantageous
for low resolution renderings.

In other applications, such as statistical analysis, one is often interested in both the main data
trends as well as outlier behavior. In order to achieve an optimal low level-of-detail rendering for
such applications, one could further restrict the minimal density p of bins during computation of
the adaptive binning to ensure that details in sparse areas of the data are represented accurately.
As proposed by Novotný and Hauser [26] one may also employ a separate outlier detection
scheme for this purpose in which data records located in bins of extremely low density p are
rendered as individual lines resulting in a hybrid approach of line-based and histogram-based
parallel coordinates.

5.4.2.4 Parallel Coordinates in VisIt

In VisIt, parallel coordinates are implemented as a plot plugin. The user interface of parallel
coordinates consists of three main parts: i) the attributes window, ii) the Viewer displaying the
actual plot, and iii) the Extends tool.

The attributes window (see Figure 5.8 a), is used to specify the many different settings of
parallel coordinates. The user can here specify different visualization options, such as, the ren-
dering resolution, as well as the data variables to be displayed. For the focus view, three different
rendering options are available: i) lines, i.e., render the focus using line-based parallel coordi-
nates, ii) constant color, i.e., use a histogram-based rendering with constant color, and iii) varying
color, i.e., use a histogram-based rendering and vary brightness of color based on density. In the
context of FastBit enabled VisIt, all histograms required for rendering of parallel coordinates are
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a) b)

Figure 5.8: Parallel coordinates in VisIt: a) GUI for defining the different parameters of parallel
coordinates, such as, the resolution (Number of partitions), color, or brightness (gamma) of the
context and focus histograms. b) Parallel coordinates with context particles (gray) and focus
(red). The red, triangle-shaped sliders are used to define the selection query px > 5.9272∗1010

shown in the focus (red). The selection defines three distinct groups of particles along the x axis
(blue circle). In py several data lines diverge from the main data trend of the selection indicating
that the according particles are outliers (yellow circle).

computed in the file reader using FastBit, i.e, no raw data needs to be transferred to the plot but
only a set of much smaller histograms.

The VisIt Viewer then defines the standard interaction mechanisms for execution of, e.g.,
zooming and panning of the view. Here the user can also enable the Extends tool.

The Extends tool is used to perform selection operations in parallel coordinates and, hence, to
define the focus view. The tool consists of two sliders rendered on top of each parallel axis (see
Figure 5.8 b). By moving the sliders using the mouse a user can intuitively define a minimum
and maximum value in each displayed data dimension. Together, the value ranges define a multi-
variate range query describing the data of interest. Again, the according conditional histograms
required to render the focus are directly computed using FastBit. This means not only that no
raw data needs to be transferred to the plot, but more importantly, that VisIt only needs to access
the data associated with the selected data records allowing it to quickly recompute the focus
histograms.

As illustrated in Figure 5.8 b, when performing data selection in parallel coordinates a user
receives immediate feedback about important properties of the current selection. Outliers, e.g.,
appear as single data lines diverging from the main data trend(s) (yellow circles in Figure 5.8 b).
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The appearance of several distinct groups of data lines may indicate that the selection crosses
different cluster suggesting that one may want to refine the selection accordingly (blue circle in
Figure 5.8 b). Finally, the user may also compare the data trend(s) shown in the focus with the
data displayed in the context.

5.4.3 Data Selection

In the proposed system, there is synergy between presentation of information to the user and
specification of queries. The parallel coordinates plot serves to present context and focus data
views to the user, and also serves as the mechanism for specifying a multivariate Boolean range
query. In a typical use case (see, e.g. Section 5.8.1), a multivariate range query might take the
form of px > 109 && py < 108 && y > 0, which selects high momentum particles in the upper
half of the beam. Similar conditions can be formulated to define arbitrary subsets of particles
with interesting momentum and spatial characteristics.

Besides parallel coordinates, the user can also define multivariate range queries via other
VisIt operators. Using, e.g., a Threshold operator, a user can quickly generate subset plots of
the data without having to go through a manual, step-by-step selection process. In case the user
has a priori knowledge of the data subset of interest, a Threshold operator may, therefore, be
more efficient. In contrast to the Threshold operator, parallel coordinates do provide important
feedback in the selection process. Parallel coordinates are, therefore, the preferred interface for
defining data selections in cases where the boundaries of the data subset of interest are unknown.

Once the user specifies a multivariate range condition, those conditions are passed back up-
stream in the system to the FastBit-enhanced HDF5 reader for processing, either to compute new
histograms or to extract data subsets that match the query for downstream processing. In the case
of data subsetting, FastBit locates those data records that satisfy the query and then pass them
along for downstream processing. For conditional histograms, FastBit computes new histograms
using the query conditions as well as a histogram specification: the number of bins and the bin
boundaries.

Once an interesting subset has been identified, yet another form of query can be issued in
order to identify the same data subset at different points in time. This type of query is of the
form ID ∈ (id1, id2, ..idn), where there are n particles in the subset. Again, such queries can
be processed efficiently by FastBit and only the relevant set of particles is extracted and then
passed along to visual data analysis machinery. This processing step offers a huge performance
advantage: a technique without access to the index information must search the entire dataset
for particle identifier matches. In VisIt ID-based selection is implemented via the novel concept
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of Named Selections (see Section 5.4.3.1). By issuing an identifier query across the entire (or
parts of the) time sequence, VisIt can construct particle paths, which reveal valuable information
about how particles are accelerated over time (see Section 5.4.3.2).

5.4.3.1 Named Selection

Named Selections are a new concept in VisIt allowing selection of data subsets based on ID,
here particle IDs defined as a separate data variable. The concept of ID-based selection allows
the same particle subset to be extracted from different timesteps and in this way defines the
foundation for tracing of particle subsets over time. In contrast to an operator, plot, or database
plugin, Named Selections define a new concept of the core VisIt system.

To create a Named Selection, a user issues an according request by calling the CreateNamed-
Selection(...) function via VisIt’s CLI interface or by using an according macro8. This request
is communicated to the VisIt compute engine via a corresponding remote procedure call (RPC)
(see Section 2.4.1). In this call the client sends a user specified name for the Named Selection
and the Id of the plot the Named Selection should be created from to the engine running on the
server. The engine then creates a new Named Selection that selects all data objects displayed
by the input plot (i.e., the IDs of the according data objects, here particles). All components
of the according visualization pipeline that influence the selection (e.g., operators or plots that
modify the set of displayed particles), therefore, need to overwrite according virtual functions
to enable the engine to create a Named Selection based on the modifications they define. For
example, a Threshold operator may modify the list of displayed data objects by removing all
parts of the data that do not suffice a given set of threshold criteria (e.g., select only particles
with px > 1e10). Similarly, a parallel coordinates plot may modify a Named Selection based on
the selection criteria defined in the focus of the plot.

Besides CreateNamedSelection, VisIt supports the following additional RPC’s specific to
Named Selections: i) ApplyNamedSelection(...), i.e., apply the selection with the given name to
a plot, ii) SaveNamedSelection(...), i.e., save a Named Selection to disk, and iii) LoadNamedSe-
lection(...), i.e., load a previously saved Named Selection from disk.

Named selections are a general concept, i.e., they can be used in combination with all
datatypes that allow for ID-based selection. In context of FastBit-enabled VisIt, ID-based se-
lections defined by Named Selections are evaluated directly by FastBit in the filereader. This

8Macros are used in general to represent a set of instructions in an abbreviated format. In VisIt a macro consists
of a Python script, a function name, and a user defined name. Macros can be represented in the VisIt GUI as a single
button providing convenient user-access to macro functions.

133



means, when a NamedSelection is applied then the filereader loads only the data associated with
the selected data objects (here particles), greatly reducing the workload of the then following
operations. In case of database plugins that do not support ID-based selection, VisIt performs the
according filtering operation itself after the data has been loaded.

5.4.3.2 Particle Tracing and Particle Path Visualization

Using the concept of Named Selections a user can define a beam and trace the beam particles
over time. Being able to follow a set of particles step-by-step through time is very informative
because it allows scientists to investigate where particles selected at timestep a are located at
timestep b. This approach furthermore allows for identification of different substructures of a
beam. While the selected particles may form a compact bunch at timestep a they may define
different clusters in timestep b. However, when focusing on a single timestep at a time, large
parts of the temporal context are lost. Particle path visualizations overcome this limitation by
showing the complete (or parts) of the path a particle is moving along over time.

In VisIt particle paths are computed using the so called Persistent Particles (PP) operator.
The Persistent Particles operator iterates through the time series and connects the location of
corresponding particles via line segments. In most cases the Persistent Particles are combined
with a Named Selection, i.e., the user usually traces only a small subset of particles over time
(here, e.g., a particle beam). Using the concept of Named Selections has the advantage that the
Persistent Particles operator does not need to know whether all or only a subset of particles should
be traced. Furthermore, VisIt can evaluate Named Selections fast using FastBit so that only the
data of the selected particles is passed on to the Persistent Particles operator greatly improving
the performance of particle tracing in VisIt. When computing particle paths, one ID-query is
issued for each relevant timestep, e.g., when tracing particles from timestep t = 20 to t = 29 the
system needs to evaluate ten ID queries. Using the proposed framework the particle paths for
a single beam are computed within seconds compared to hours using the original scripts (see
Section 5.4.5 for details). VisIt, hence, enables scientist to use particle tracing as a regular tool
in the analysis process greatly improving efficiency and accuracy of the overall analysis process.

Figure 5.9 a, shows the GUI of the Persistent Particles operator. The user can here specify:
i) the start and end time for the tracing, ii) a skip rate defining whether every (skip rate=1 ), or,
e.g., only every other timestep (skip rate=2 ) should be considered, iii) whether particles should
be connected to define paths, and iv) which variable should be used to identify corresponding
particles (here ID). The Connect Particles option defines whether the data from the different
timesteps should simply be merged (Connect=false), or whether particle paths should be created
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Figure 5.9: a) GUI of VisIt’s Persistent Particles operator used for tracing of particles over time.
b) Example VisIt pipeline for particle tracing. After computing the geometry of particle paths
using Persistent Particles (settings shown in a) py is mapped to the z dimension of the plot using
an Elevate operator. The paths are then scaled (Transform operator) and transformed to tubes
(Tube operator) to improve the visual appearance of the plot. Particle paths are finally rendered
using a Pseudocolor plot where color represents px (see legend). c) Particle path visualization of
a particle bunch in a 2D particle dataset created using the pipeline shown in b.

by connecting corresponding particle locations with line segments (Connect=true). The start and
end time for the tracing can be defined either as absolute times (i.e, trace particles from timestep
a to timestep b) or relative to the current time. Relative start and end times allow a user, e.g.,
to specify that VisIt should trace particles n timesteps backward in time (start = −n) and m

timesteps forward in time (stop = +m). This concept enables the user to create visualizations
and animations in which particle paths change dynamically with time.

Figure 5.9 b, shows an example pipeline for visualization of particle paths in VisIt. The
resulting visualization is shown in Figure 5.9 c. In VisIt, particle paths — computed by the
Persistent Particles operator — are visualized using a Pseudocolor plot (see Figure 5.9 b, c).
The Pseudocolor plot allows the user to color particle paths according to a selected variable
and, e.g., also change the opacity of particle paths. The Persistent Particles operator computes
particle paths in physical space (i.e., (x,y) in 2D and (x,y,z) in 3D). In the case of 2D particle
paths an Elevate operator may be used to extend the paths to the third dimensions by mapping
the values of a selected variable to z (see Figure 5.9 b, c). To improve the visual appearance
of particle paths a user may then apply a Tube operator to display paths as three-dimensional
tubes rather than lines. Finally, a user may apply additional geometric transformations using a
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Transform operator to, e.g., scale particle paths or display paths in spherical instead of Cartesian
coordinates. Figure 5.9 c, shows an example particle path visualization in (x,y, py) space with
paths being colored according to px.

5.4.4 Visual Exploration of Laser Wakefield Accelerator Simulations

This section describes the general model of a typical visual analysis of laser wakefield particle
acceleration data. A detailed example use case study based on the described model is presented
later in Section 5.8.1. The introduced use model, while applied here to accelerator science, is
generally applicable to a broad set of applications.

Figure 5.10 illustrates the general workflow of a typical visual analysis. Initially, a user de-
fines a selection of particles at a single timestep. Selection of particles is performed in an iterative
process in which the user first defines a set of different thresholds using parallel coordinates (see
Figure 5.10 a, left). Validation of the selection is initially usually done using the parallel coordi-
nates plots itself. Having identified a particle subset of interest the user validates and analyzes the
selection using different types of plots (e.g., a Pseudocolor plot) (see Figure 5.10 a, right). De-
pending on the insight the user has gathered from the different visualizations, the user may then
return to the parallel coordinates plot to further improve the selection. This process of iterative
selection and validation supports accurate selection of particle subsets of interest.

Having defined a particle subset of interest the user then typically investigates the temporal
behavior of the selected particles. This is done either directly via inspection of the paths of
the selected particles (see Figure 5.10 b) or by tracing the individual particles through time by
changing the timestep (see Figure 5.10 c). Figure 5.10 b, shows the paths of the particles selected
in the parallel coordinates plot shown in Figure 5.10 a. Based on the paths different sets of
particle injection occurring at four different times can readily be identified.

The identified particle subgroups are not only injected at different times but also define dis-
tinct clusters in physical space during early timesteps. As the next step in a typical analysis the
user, therefore, modifies the current timestep, i.e., the user traces the particles through time. In
the context of laser wakefield accelerator data, particles are typically selected at a late timesteps
and are then traced backward in time. To separate the different groups of particles behaving dif-
ferently over time, the user refines the selection based on information from a different timestep.
In the example shown in Figure 5.10 c, the user removed the two sets of particles that were in-
jected early from the selection by applying an additional threshold in x at an early timestep. As
in the initial selection process, a user may iteratively refine the selection at that timestep based
on insight from the visual validation.
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Figure 5.10: Use model for the visual exploration of particle data from laser wakefield accelerator
simulations. a) Initially a user selects a particle bunch of interest using parallel coordinates.
Various other plots (e.g., scatter-plot or Pseudocolor plot) serve then as means for validation
and analysis of a particle selection. Having defined a selection, a user commonly computes the
temporal paths of the selected particles (b) or modifies the timestep shown (c), to investigate the
behavior of particles over time. In this process a user may identify different subsets of particles
that behave differently over time and refine the selection accordingly. Figure a and c each show
a parallel coordinates plots (left) and an (x,y) point plot (right). Particles that are part of the
selection are shown in color whereas other particles are shown in gray. The particle traces shown
in b are based on the selection defined in a.

Afterwards, a user may then again, either analyze the particle paths of the refined selection
or trace the particles through time by modifying the current timestep. In this process a user may
identify various other substructures of the initial selection and further refine the selection based
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on information from different timesteps.

The concept of iterative, interactive refinement and validation of data selections enables ac-
curate definition of data features. In particular compared to an analysis based on animations of
static plots and non interactive scripts for data selection — a methodology commonly used in
practice — the proposed methodology enables a more detailed and accurate data analysis and
enables efficient analysis of even extremely large simulation datasets which is prohibitively slow
otherwise.

5.4.5 Performance Evaluation

This section presents results of a study aimed at characterizing the performance of the described
implementation under varying conditions using standalone, benchmark applications. These unit
tests reflect the different stages of processing presented earlier in Section 5.4.4 (see also Sec-
tion 5.8.1). First, the presented study examines the serial performance of histogram computation
in Section 5.4.5.1: histograms serve as the basis for visually presenting data to a user via a
parallel coordinates plot. Second, Section 5.4.5.2 examines the serial performance of particle
selection across all timesteps of simulation data. Finally, Section 5.4.5.3 investigates the parallel
scalability characteristics of the histogram computation and particle tracking implementations on
a Cray XT4 system.

The serial performance tests in Sections 5.4.5.1 and 5.4.5.2, use a 3D particle dataset con-
sisting of: 30 timesteps worth of accelerator simulation data, each timestep has about 90 million
particles and is about 5GB in size (plus≈ 2GB for the index). The aggregate dataset size is about
210GB, including the index data. The system stores and retrieves simulation and index data
using HDF5 and a veneer library called HDF5-FastQuery [122]. HDF5-FastQuery presents an
implementation-neutral API for performing queries and obtaining histograms of data. The serial
performance tests were conducted on a workstation equipped with a 2.2Ghz AMD Opteron CPU,
4GB of RAM and running the SuSE Linux distribution.

The serial performance tests in Sections 5.4.5.1 and 5.4.5.2 measure the execution time of two
different implementations that are standalone applications created for the purpose of this perfor-
mance experiment. One application, labeled FastBit in the charts, uses FastBit for index/query
and histogram computation. The other, labeled Custom in the charts, does not use any indexing
structure, and therefore performs a sequential scan of the dataset when computing histograms
and particle selections. Note, in order to enable a fair comparison this study uses a dedicated
Custom code which shows better performance then the IDL scripts currently used by the science
collaborators of the LOASIS program who supported this work.

138



5.4.5.1 Computing 2D Histograms

This section describes a set of tests aimed at differentiating performance characteristics of com-
puting both unconditional and conditional histograms. The unconditional histogram is simply a
histogram of an entire dataset using a set of application-defined bin boundaries. A conditional
histogram is one computed from a subset of data records that match an external condition.

Unconditional Histograms

In the use model of laser wakefield accelerator analysis, the computation of the unconditional
histogram is a “one-time” operation. It provides the initial context view of a dataset to the user.

For this test, the test program varies the number of bins in a 2D histogram over the following
bin resolutions: 32x32, 64x64, 128x128, 256x256, 512x512, 1024x1024, and 2048x2048 bins.
All histograms span the same range of data values: increasing the bin count results in bins of finer
resolution. The results of this test are shown in Figure 5.11. Since both the FastBit and Custom
applications need to look at all the data records to compute an unconditional histogram, large
variations in performance with changing number of bins are not expected. FastBit is generally
faster than the Custom code throughout primarily because of the difference in organization of the
histogram bin counts array. FastBit uses a single array, which results in a more favorable memory
access pattern. FastBit computes adaptive histograms by first computing a higher resolution
regularly binned histogram and then merging bins. The computation time for adaptively binned
histograms shows only a a minor, constant increase compared to the case of regular binning
because merging bins is a fairly inexpensive process and increasing the number of bins has no
significant effect on the performance of regularly binned histograms.

Conditional Histograms

In contrast to the unconditional histogram, which is a one-time computation, the process of visual
data exploration and mining relies on repeated computations of conditional histograms. There-
fore, this work focuses on achieving good performance of this operation to support interactive
visual data analysis. This set of tests are based on the described use model; a change in the set
of conditions results in the examination of a greater or lesser number of data records to compute
a conditional histogram. This set of conditions reflects the repeated refinement associated with
interactive, visual data analysis.

This test is based on parameterizing the number of hits resulting from range queries of the
form px > ... defined as the histogram conditions. With increasing thresholds of particle momen-
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Figure 5.11: Timings for serial computation
of unconditional histograms.
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Figure 5.12: Timings for serial computation
of conditional histograms.
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Figure 5.13: Timings for serial processing of particle
identifier queries.

tum in the x direction (px), fewer data records (particles) match the condition and contribute to
the resulting histogram. In these tests, the number of bins is defined to be constant at 1024x1024.

Figure 5.12 presents results for computing conditional histograms using FastBit and the Cus-
tom application. For small number of hits, the FastBit execution times are dramatically faster
than the Custom code that examines all data records. Also, in this regime the regular and adap-
tive binning show similar performance. While for unconditional histograms the minimum and
maximum values are known for each variable, FastBit here needs to compute these values from
the selected data parts in order to compute the adaptive binning. Due to this fact the performance
of the adaptive binning decreases compared to regular binning for very large selections. It is
important to note that visual analysis queries typically isolate a small number of particles – from
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tens to thousands – and FastBit provides outstanding performance in this regime. As the num-
ber of hits increase, approaching 1M and 10M+ particles – which is a significant fraction of the
90M total particles – a sequential scan through all the data records produces better results. This
performance change is due to the fact that FastBit computes the histogram in two separate steps.
It first evaluates the user-specified conditions to select the appropriate values, and then counts
the number of values in each bin of the histogram. The selected values are passed from the first
to the second step as an intermediate array with as many elements as the number of hits. It is
expensive to pass this intermediate array through memory when it is large. Since the intended
application primarily have a small number of hits, using FastBit is more efficient. The adaptive
binning strategy requires an additional pass through the data to determine the actual minimum
and maximum values, which demands significant amount of time.

5.4.5.2 Particle Selections

Following the described use model, once a user has determined a set of interesting data con-
ditions, like particles having a momentum exceeding a given threshold, the next activity is to
extract those particles from the large dataset for subsequent analysis. This set of tests aims to
show performance of the particle subsetting part of the processing pipeline.

The execution time for this task is clearly proportional to the size of the selection – the time
required to find a set of particles in a large, time-varying dataset varies as a function of the size
of the particle search set as well as the size of the simulation data itself. The test parameterizes
the search set size by varying the number of particles to search for over values ranging from 10,
100, 1000, ... , up to 20M particles.

The Custom code uses a sequential scan of the entire dataset to search for particles in the
search set. For each data record, it compares the particle ID of the record to the search set using
an efficient algorithm: if the size of the search set is S, then the search time is log(S). If there
are N data records in the entire dataset, the computational complexity of the entire algorithm is
Nlog(S). In contrast, the worst-case time required to locate a set of identifiers are expected to be
proportional to the number records found [53].

Figure 5.13 presents results for running ID queries using FastBit and the Custom code for one
timestep. For relatively small number of identifiers, FastBit is about four orders of magnitude
(104×) faster than the Custom code. As the number of identifiers involved increases, the relative
difference becomes smaller. When 20,000,000 of identifies are involved, FastBit is still three
times faster.
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5.4.5.3 Scalability Tests

Whereas the previous sections focused on the serial performance of computing histograms and
performing particle subset selections, this section focuses on the scalability characteristics of
both algorithms.

The platform for these tests is franklin.nersc.gov9, a 9,660 node, 19K core Cray
XT4 system. Each of the nodes consists of a 2.6GHz, dual-core AMD Opteron processor10 and
has 4GB of memory and runs the Compute Node Linux distribution. One optimization the test
code uses on this machine at all levels of parallelism is to restrict operations to a single core of
each node. This optimization maximizes the amount of memory and I/O bandwidth available to
each process in the parallel performance tests. On this platform, the Lustre Parallel Filesystem
serves data to each of the nodes. The nodes used in the study are a small fraction of a larger
shared facility with a dynamic workload. The scalability tests cover parallelism levels over the
following range: 1, 2, 5, 10, 20, 50, and 100 nodes of the Cray XT4.

As in the previous sections, here wall-clock times are reported which encapsulate CPU pro-
cessing and I/O. Speedup factor are computed as the ratio of time taken by a single node to the
times taken by the node subset to complete a task. The here described tests implement a strong
scaling, i.e., they keep the problem size fixed at 100 timesteps for all cases.

The dataset used in this study has 100 timesteps; each timestep has 177 million particles and
is about 10GB in size. The aggregate dataset size is about 1.5T B, including the index data. The
scalability tests employ a fairly simple form of data partitioning: namely they assign subsets
of timesteps (corresponding to individual HDF5 files) to individual nodes for processing. The
subsets are statically assigned to nodes in a strided fashion.

Following the theme of typical use cases this work reports times for realistic science usage
scenarios. For histogram computation, the test code generates five parallel histogram pairs for the
position and momentum fields. The histograms consist of 1024x1024 bins, which is a reasonable
upper limit given typical screen resolutions. For conditional histograms, the query px > 7∗1010

is used. To evaluate the performance of the particle tracking, the query px > 1011 — which
results in 500 hits — is used. All of these choices are grounded in discussions with science
collaborators from the LOASIS program and reflect reasonable ranges and thresholds.

Figure 5.14 presents results from parallelizing the computation of both conditional and un-
conditional histograms over multiple nodes. As expected, the computation time decreases as

9For more details about Franklin see http://www.nersc.gov/nusers/systems/franklin/
about.php.

10In the meantime NERSC has updated the compute nodes of its supercomputer franklin to AMD Opteron 2.3
GHz Quad Core processors and 8GB memory. The tests described here were executed before this update.
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tracking.

more nodes are added. Similar to the serial case, there is no major difference between FastBit
and the Custom application for computing the unconditional histogram since both implementa-
tions examine all data records. For computing the conditional histograms, FastBit maintains its
advantage over the Custom application. Figure 5.15 presents the speedup factors corresponding
to this computation; showing a very favorable speedup. This is to be expected since the nodes
can perform their computations independent of others.

Figure 5.17 presents results from particle tracking over 100 timesteps. Similar to the serial
case, FastBit is faster than the Custom application, and maintains its advantage when run in
parallel. Figure 5.16 demonstrates that the parallel implementation of the particle tracking shows
excellent scalability. When using 100 nodes, FastBit is able to track 500 particles over 1.5TB of
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data in 0.15 seconds. In contrast, the IDL scripts currently used by the LOASIS researchers who
supported this work take≈2.5 hours to track 250 particles for a small 5GB dataset. Furthermore,
owing to IDL limitations, the scripts cannot load all required data for extremely large 3D datasets
requiring incremental data access which in turn leads to a further decrease in performance. Thus,
this research represents a dramatic improvement for the scientist’s workflow: what formerly
required many hours can now be processed in less than a second.

5.5 Automatic Beam Detection Using Bunch-lifetime Analysis
and Fuzzy Clustering

While interactive exploration of the laser wakefield accelerator (LWFA) simulation data using
high-performance visual analysis is effective, it is limited with respect to the analysis of large
numbers of datasets. The data exploration methods described so far rely on substantial manual in-
put by the user and may, hence, be time-consuming. In order to enable analysis of large databases
of simulation data, auxiliary mechanisms are needed to automate the most time-consuming parts
of the analysis. One key problem in the analysis of LWFA simulation data is the detection of
particle beams.

To address this problem, this section describes automatic beam detection, a novel algorithm
for automatic classification of the highest-energy particle beam in LWFA simulations. First, the
algorithm identifies a set of beam-point candidates describing the location of high-densities of
accelerated particles at individual timesteps. Afterwards, the so called bunch lifetime diagram
is constructed by organizing and pruning the beam-point candidates as nodes in a minimum
spanning tree. Independent of the bunch lifetime analysis, the algorithm partitions the data using
fuzzy clustering to detect timesteps that contain a high-energy particle beam. By combining the
results from fuzzy clustering and the bunch lifetime analysis, estimation of the highest-energy
beam in a LWFA simulation becomes possible.

Algorithms like the automatic beam detection or the automatic beam path analysis described
in Section 5.6, promise to support a more focused and efficient analysis process. Automatic
analysis algorithms are, hence, one main component to enable the analysis of large collections
of LWFA simulations.

In the context of the automatic beam detection approach introduced in this section this work
describes the following new contributions:

(i) A new method for identification of features of high particle density indicating the location
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of potential particle beams in space as well as their lifetime is described (see Section 5.5.2
and 5.5.3).

(ii) The application of fuzzy clustering for detection of potential particle beams at single
timesteps is introduced (see Section 5.5.4.

(iii) By combining the results from the bunch lifetime analysis and fuzzy clustering this work
enables the estimation of the highest-energy beam formed during the course of a LWFA
simulation (see Section 5.5.5).

(iv) Finally, the proposed algorithm is validated using four different simulation datasets illus-
trating the effectiveness of the proposed approach (see Section 5.5.6).

5.5.1 Design of the Analysis Pipeline

The goal here is to on design an analysis framework to aid physicists in detecting beam forma-
tion and characterizing beams. The beams of interest constitute a condensed group of particles
exhibiting high momentum along the x-axis (px), i.e., high momentum along the laser propaga-
tion axis. Furthermore, a high-quality beam is condensed, i.e., it should have small spread in the
spatial-energy dimensions (i.e., in 2D (x,y, px, py)). The proposed algorithm addresses particle
dynamics as a function of time by inspecting the behavior of bunches of particles across the
simulation. By combining this bunch lifetime analysis with a clustering algorithm estimation of
which accelerated particles form the highest-energy beam becomes possible.

position
momentum

Location of 
High-Density 

Bunches

Fuzzy Clustering

Analysis of Bunch
Lifetime

Beam Estimation
Simulation Data

t=1..n

Figure 5.18: Processing pipeline for automatic beam detection.
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Figure 5.18 illustrates the processing pipeline for automatic beam detection. The different
parts of the pipeline are explained in the following subsections. First, the algorithm computes the
location of high-density bunches of high-energy particles for each timestep via stationary point
detection on probability density functions (PDF) of the particles along the laser propagation axis
(x) (see Section 5.5.2). The so detected points are then organized in a graph to characterize the
lifetime of potential high-energy bunches (see Section 5.5.3). Separate from the bunch lifetime
analysis, a fuzzy clustering is executed for each timestep to detect particles forming a potential
beam (see Section 5.5.4). Based on the information from the bunch lifetime analysis and the
fuzzy clustering, the method estimates the most energetic beam (see Section 5.5.5). In the fol-
lowing sections a 2D particle dataset is used to illustrate the different steps of the method (see
Table 5.1).

5.5.2 Locating High-density Bunches

The beams of interest are characterized by high density of high-energy particles in small spatial
regions. The objective of the first analysis step is to identify potential groups of particles that ex-
hibit this desirable property. The algorithm, therefore, first computes for each recorded timestep
of the simulation a histogram of the particle distribution in the x-direction with density-peaks
indicating locations of potential beams.

Particle energy is roughly proportional to the momentum in the x-direction (px). The algo-
rithm, therefore, does not use the entire particle dataset, but instead considers only those particles
with px > 1e10. This threshold eliminates low-energy particles — greatly reducing the workload
for the analysis — without compromising the beam detection procedure.

Having identified the relevant particles, the algorithm estimates the PDF in x of the particles,
f (x), describing the density distribution of accelerated particles within the simulation window.
The algorithm then computes maximal extrema points (maximal turning point or relative maxi-
mum) xmaxima = {X0, ...,Xk}, by computing d f (x)/dx, for f (x) changing from positive to neg-
ative [147]. Differentiability is guaranteed by using a Gaussian smoothing kernel. The kernel
bandwidth of the filter is chosen using the following rule of thumb: 0.9 times the minimum of the
standard deviation and the interquartile range divided by 1.34 times the sample size to the neg-
ative one-fifth power, as suggested by [148](pp 48-49). The maximal extrema points represent
potential beam-point candidates for the next step of the analysis.

Figure 5.19 shows the x-location of beam-point candidates for a single timestep of the exam-
ple dataset A (see Table 5.1). Note that the beam-point candidates correspond to high-density
regions indicated by peaks of the smoothed PDF.
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Figure 5.19: Locating high-density bunches for dataset A at a single timestep. The detected
beam-point candidates (red triangle) define peaks of the smoothed PDF.

5.5.3 Analysis of Bunch Lifetime

After identification, the maximum extrema points of the different timesteps — each representing
a potential beam-point candidate — are organized in a graph. Each node n of the graph represents
a beam-point candidate. The edges of the graph then define corresponding beam-point candidates
indicating the lifetime of high-density particle bunches.

To construct this so called bunch lifetime diagram, the algorithm first constructs an incidence
matrix for a graph by discretizing x axis into l bins. Bins that contain a beam-point candidate are
assigned the value 1 whereas all other bins are set to 0. This process is repeated for each timestep
t defining a set of feature vectors f v(t) = b(t)1,b(t)2, .....,b(t)l , with b ∈ {0,1}, describing at
which relative x locations a high-density bunch was found at timestep t. The feature vectors
f v(t) are stacked to define the temporal feature matrix:

f m =


v(tmin)

v(tmin +1)
....

v(tmax−1)
v(tmax)

 =


b(tmin)1 b(tmin)2 ... b(tmin)l

b(tmin +1)1 b(tmin +1)2 ... b(tmin +1)l

... ... ... ...

b(tmax−1)1 b(tmax−1)2 ... b(tmax−1)l

b(tmax)1 b(tmax)2 ... b(tmax)l


Note, by merging the feature vectors f v(t) to define the feature matrix f m, the different beam-
point candidates from the different timesteps are aligned via their relative x location in the moving
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(a) (b)

Figure 5.20: Bunch lifetime diagram for dataset A. Particle history as a minimum spanning tree
(MST) before (a) and after pruning (b). with likely branches and connected nodes.

simulation window. This is possible because the high energy particles travel at approximately
the speed of light, i.e., approximately the same speed as the simulation window. The relative
location in x of a beam-point candidate is, therefore, expected to be relatively stable.

To identify corresponding beam candidates — i.e, define the edges in the graph compromis-
ing the bunch lifetime diagram —, the algorithm then executes a minimum spanning tree (MST)
algorithm [149], that penalizes connections among nodes in the same timestep (see Figure 5.20
a).

As described above, beam-point candidates are expected to be relatively stable in xrel, i.e.,
their relative location in x within the simulation window. The approximate size of a beam, as
suggested by the physicists, is typically no larger than d = 2µm for these parameters. Edges
longer than d = 2µm, hence, define false connections between different bunches. In the next
step, the created graph is, therefore, pruned by eliminating edges that are too long (i.e., longer
than d = 2µm). After this pruning, the graph is guaranteed to contain only short edges and only
edges that connect nodes (i.e., beam-point candidates) between different timesteps. Assuming
that the time lag between recorded timesteps (i.e., dumps) is small enough to capture physical
phenomena such as, bunching and dephasing, — a property selected by the scientists executing
the simulation — the algorithm then also eliminates disconnected nodes. Figure 5.20 b, shows
the resulting bunch lifetime diagram for dataset A, conveying the temporal history of only the
most likely candidates (compare Figure 5.20a and b, before and after pruning).

The bunch lifetime diagram as defined here describes the temporal history of temporally sta-
ble, high-density particle regions defining potential particle beams. The bunch lifetime diagram
is guaranteed to contain: i) only edges connecting different timesteps, ii) only short edges that

148



are no longer than the expected beam size, and iii) only nodes that are connected to at least one
other node. As illustrated in Figure 5.20b, a bunch lifetime diagram usually contains several in-
dependent graphs — i.e., graphs not connected via an edge to any other graph — each of which
describes the lifetime of a different potential particle beam.

5.5.4 Fuzzy Clustering

As discussed in Section 5.5.2, a high particle density is not sufficient to identify a high quality
beam, but both the spatial and momentum features play an important role in classifying a bunch
of particles as a beam of interest.

Unsupervised algorithms are appropriate for data mining applications, where the information
content of a large database is not known beforehand, but can emerge during the partitioning pro-
cess. Without supervision, non-hierarchical clustering methods can use an optimization model
to classify inter-point distances and dissimilarity data. The objective is to minimize total dissim-
ilarity amongst all objects and the corresponding most representative objects.

In this context, the here described approach focuses on searching for the primary beam par-
ticles, i.e., the beam of highest energy. This beam should be confined to a small spatial region,
be compact in momentum space, and having high energy indicated by high px values. Classical
clustering algorithms would try to assign each data point to exactly one cluster [150]. The prob-
lem of detecting particle bunches, however, requires relaxing this condition so that each particle
has some graded or fuzzy membership in each cluster.

In this work, the R package cluster is used to perform data clustering. More specifically,
the algorithm uses the fanny [151] function to identify two groups of particles in (x,y, px, py

space via fuzzy cluster analysis. To ensure equal weighting of the different data dimensions the
spatial and momentum variables are first normalized before calculating inter-particle distances.
The most frequent normalization strategy consists in the transformation of the original data such
that the new feature set is guaranteed to have zero mean and unit standard deviation [152]. Dis-
similarities between particles are the computed using squared Euclidean distances. Afterwards,
fanny performs a fuzzy C-means clustering based on the distance matrix by minimizing the ob-
jective function

F =
k

∑
v=1

∑
n
i=1 ∑

n
j=1 um

ivum
jvd(i, j)

2∑
n
j=1 um

jv
, (5.1)

where v is a cluster, n is the number of observations, k is the number of clusters, m is the member-
ship exponent, d(i, j) is the dissimilarity between observations i and j, and uiv is the membership
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Figure 5.21: Overview of the results from the beam estimation for dataset A shown in physical
space (x,y). The beam-point (squares) (see also Figure 5.19) are combined with the result from
the fuzzy clustering. The beam particles are shown in black and the non-beam particles are
shown in gray. Note, here only the particles with px > 1010 used in the analysis are shown.

of observation i to cluster v [151]. The dissimilarity measure appears as an L1 norm; it finds
medoids11 instead of ordinary centroids. The minimization algorithm is based on direct applica-
tion of the Lagrange multiplier approach with Kuhn-Tucker conditions [153].

5.5.5 Beam Estimation

To estimate the highest-energy bunch, the algorithm then compares the estimated-beam cluster,
calculated for each timestep independently using fuzzy clustering, with the beam-points for the
respective timestep included in the bunch lifetime diagram (i.e., those points at a timestep that
remained after the pruning; see Section 5.5.3). If the most accelerated group of particles —
which is expected to be at the rightmost cluster — and a beam-point overlap, then the algorithm
concludes that the beam was found and returns the particles of the according cluster.

11Medoid = Median-based centroid. A medoid is that object of a cluster with the minimal average dissimilarity
to all objects in the cluster. Similar to the mean, medoids are used in data clustering as representative objects for
clusters, in particular in the context of data where a meaningful mean or centroid cannot be defined.
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The bunch lifetime diagram combined with the clustering output yields two important pieces
of information: (i) detection of the timestep containing high-energy particles by checking for
overlapping; and (ii) estimation of a beam containing particles that behave similarly, according
to their spatial coordinates and energy attributes.

Figures 5.21 and 5.22 a, provide an overview of the result of the beam estimation for the
example dataset A. In both figures the cluster membership is narrowed to a value of 0.7, so
that the cluster closer to the rightmost high-density point will contain only particles with a 70%
probability to belong to this cluster. This idea is analogous to the search for the core particles
in the multi-variate distribution given by (x,y, px, py) for the primary beam. The beam cluster is
labeled in black in both Figure 5.21 and Figure 5.22 a. Physicists have noticed that the estimated
beam completely enclose the high energy bunch of particles.

5.5.6 Validation

In this section the proposed method based on the bunch lifetime diagram and fuzzy clustering
is evaluated for various 2D particle datasets. The proposed framework contains data processing
and machine learning algorithms from R project [154, 128]. The R project, or simply R, is a free
multi-platform software environment for statistical computing, containing useful packages for
data analysis, visualization and machine learning. All computations were performed on a Dell
Optiplex 755 Intel Core Duo 3GHz. The processing took ≈1-4 minutes for each timestep using
2 Gb RAM memory. To validate the described method, it is applied to four 2D particle datasets
described in Table 5.1. The datasets vary in size as well as overall behavior.

Dataset Particles (103) Timesteps Total Size (Gb)
A 0.4 38 1.3
B 1.6 36 4.5
C 0.4 38 1.3
D 3.2 46 11

Table 5.1: Simulation datasets used for testing and validation of the proposed approach for auto-
matic beam detection (particle data only).

Figure 5.22 shows the resulting phase space diagrams (at the time when the beam is most
visible) using the proposed methodology for the four different 2D datasets. In practice a physicist
is interested in finding single, distinct, and compact particle bunches of high momentum and low
energy spread in the data.
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(a) Dataset A
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(b) Dataset B
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Figure 5.22: Clustering results shown in a phase space (x, px0) scatter plot for the four test
particle datasets. All particles with px > 1e10 are shown in gray and the particles detected by
the automatic beam detection are shown in black.

In a non-interactive manual analysis process, thresholding in px is common practice to define
high-energy particles and the beam of interest. To define a beam, a researcher investigates movies
of a variety of plots to determine an appropriate timestep and threshold values. As illustrated
in Figures 5.22(a)- 5.22(c), for simulations A, B, C a researcher may choose, for example, a
threshold of px > 9.75e10. In these examples only a single high energy beam is formed and a
single threshold in px is sufficient to isolate the beam-particles. However, simulation D contains
secondary structures, formed behind the beam and a single threshold in px is not sufficient to
isolate the beam-particles (see Figure 5.22(d)). In this case, a single threshold that captures all
beam particles would also enclose a large number of non-beam particles and, hence, result in a
selection that is too large. To isolate the beam of interest multiple thresholds in px, x and possibly
y would be required to isolate the beam of interest. One main deficiency of thresholding is that
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it is arbitrary and time-consuming, requiring manual inspection of the dataset.

Figure 5.22 demonstrates that the proposed method detects a single, distinct, bunch of high
energy particles in all four datasets. Both thresholding and the proposed algorithm depict par-
ticles of the beam for dataset A, B, and C, but our method is capable of identifying subsets of
condensed particles among the highly accelerated particles without requiring user interaction.
For experiments where no high quality beam is formed, neither thresholding nor the proposed
method can accurately detect beam particles as shown for dataset D. In dataset D, the most con-
densed structure is located on the depression between the first and second peak (px =≈ 4.5e10),
as shown in Figure 5.22(d). While the automatic beam detection algorithm detects a single, spa-
tially distinct particle bunch of high energy, it is driven towards finding distinct bunches of high
energy and the clustering result encloses the second highest quality bunch.

The proposed approach presents promising results towards automated analysis of laser wake-
field particle simulations. The method is capable of extracting particle beams and isolating
timesteps without user interaction, in contrast to manual thresholding wherein an expert is re-
quired to manually investigate the whole data in order to identify the beam of interest. With
respect to the described implementation, the main limitations of the introduced method are: i)
the computational performance is limited due to the serial implementation in R, ii) due to the
performance limitations the implementation has only been tested for 2D particle data, and iii) the
method in the described form is driven towards high energies.

5.6 Automatic Beam Path Analysis in Laser Wakefield Simu-
lations

As discussed previously in Section 5.5, auxiliary mechanisms are needed to automate the most
time-consuming parts of the analysis in order to enable analysis of large databases of simulation
data. The goal of the automatic beam path analysis algorithm described here is to enable: (i)
automatic detection of multiple particle bunches in a single simulation, not just the one of highest
energy, (ii) definition of beams as a temporal feature of the data, i.e., the beam-classification
should be based on the complete temporal history of the particles that form them, (iii) analysis of
the temporal evolution of particle beams, and (iv) the algorithm should be efficient, i.e., be able
to complete the analysis within at most several minutes rather than hours. High performance is
particularly critical to ensure that: (i) the algorithm can be used for the analysis of a large number
of datasets, and (ii) to make it a practical tool for everyday research.
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To achieve high performance the proposed algorithm employs an efficient analysis pipeline
aimed at quickly reducing the amount of data that needs to be considered during the analysis.
In the initial analysis steps the algorithm first analysis the different timesteps independently to
gather additional information about the particle bunches and to reduce the workload for later
analysis steps. Efficient grid-based methods are used to enable fast identification and segmen-
tation of particle bunches at individual timesteps independent of the size of the underlying data.
After completion of the initial timestep analysis, the algorithm then merges the results from the
individual timesteps and computes for each detected bunch a reference path describing its tempo-
ral evolution. To enable accurate classification of particle bunches the algorithm then completes
the analysis by computing a set of distance fields describing the distance of a particle’s path to a
bunch. Based on these path distance fields a user can then effectively define which particles from
a bunch of interest. To achieve good performance the algorithm uses HDF5-FastQuery [122] —
the same data management library used to enable high-performance visual data exploration (see
Section 5.4) — for fast: (i) computation of 3D conditional histograms used for the segmentation
of particle bunches, (ii) evaluation of range queries, and (iii) evaluation of ID-queries used for
particle tracing (see also Section 5.4.3.2).

The following parts of this section are structured as follows. Section 5.6.1 discusses how
a particle beam is defined and describes additional assumptions the algorithm is making in the
beam detection process. By defining the feature of interest Section 5.6.1 also describes the
basic requirements the analysis algorithm has to fulfill. Section 5.6.2 then gives an overview
of the complete analysis pipeline. The different steps of the analysis pipeline are described in
Sections 5.6.3- 5.6.6. In Section 5.6.7 the algorithm is applied to a set of different 2D and 3D
particle datasets demonstrating the validity and effectiveness of the algorithm in the context of
real-world examples. The integration of the analysis and the visualization is then discussed later
in Section 5.7. Afterwards, Section 5.8.2 describes a more elaborate example illustrating the use
of the automatic beam path analysis in combination with VisIt for: (i) comparison of different
particle bunches, (ii) evaluation of bunch quality, as well as (iii) analysis of the temporal evolution
of particle bunches.

The specific new contributions of the work described in this section are:

(i) A novel pipeline for automatic detection and analysis of particle bunches in laser wakefield
particle accelerator simulations is described. As part of the pipeline the following new
methods are introduced:

a) An efficient method for detection of particle bunches at single timesteps of a simula-
tion based on region growing (see Section 5.6.4).
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b) A method for combining particle bunch classifications from different timesteps to
define a single consolidated description of multiple particle bunches detected in a
single simulation (see Section 5.6.5).

c) A novel method for classification of particle bunches based on the temporal paths
of the particles that form them. In this process the analysis also derives additional
information about the different temporal phases of particle bunches, e.g., when was a
bunch formed or accelerated (see Section 5.6.6).

(ii) To achieve good performance the algorithm makes use of FastBit for efficient data access
and particle tracing. In this context, this thesis introduces new functions for computation
of three-dimensional (3D) conditional histograms that were specifically developed for this
work and integrated into FastBit.

(iii) The proposed method is applied to a variety of 2D as well as 3D particle data sets to
demonstrate its validity and effectiveness (see Section 5.6.7). A more elaborate example
illustrating the use of the proposed methods for comparison of particle beams is presented
later in Section 5.8.2.

(iv) Section 5.6.8, then examines the performance of the proposed analysis pipeline and its
different components.

5.6.1 Feature Definition and Assumptions

The beam path analysis is aimed at detecting particle beams that are characterized as follows:

• F1: A beam is defined by a compact bunch of accelerated particles (i.e., particle with high
px values) condensed in x, y px, py space. In 3D simulations also z and pz. This means: i)
the particle bunch is coherent in physical as well as momentum space, and ii) the particles
forming the bunch have high px values (see, e.g., Figure 5.25b).

• F2: In the simulations the laser pulse is centered in the plasma at y = 0 and z = 0 and
moves along the x axis. The laser pulse traveling through the plasma creates waves in the
plasma which in turn accelerate the particle beams (see Figure 3.8).

• F3: Particles are accelerated in the same direction as the laser pulse, here x direction.

• F4: While being trapped in the wave the particles forming a bunch are accelerated over a
period of time until they eventually outrun the wave and decelerate again. These particle
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bunches are therefore present over a period of time so that the bunches themselves define
a temporal coherent feature of the data.

• F5: The particle waves created by the laser pulse will manifest as peaks in x, y, px space
(see, e.g., Figure 5.25b).

• F6: In the analysis py and pz are used to assess the quality of particle beams as well as
to define the distance of a particle to the beam. The algorithm does, however, not use py

and pz to detect condensed particle bunches at single timesteps, because a particle beam
is usually not defined by a single condensed group of particles in y/py (or z/pz) space but
due to the characteristic oscillating transverse motion of accelerated particles constitutes as
two (or more) condensed groups of particles in this space (see, e.g., Figure 5.50 b and c).
The transverse momenta py and pz are hence symmetric variables centered around zero.

• F7: Particles may become trapped in different periods of the plasma wave. In practice,
several particle beams may, therefore, form in different periods of the wave and possibly
coexist at the same time. Furthermore, after a beam has decelerated (see F4) a new beam
may form later in time within the same period of the wave, i.e., at different times of the
simulation one may find different particle beams at similar locations within the simulation
window.

Further, the algorithm makes the following assumption:

• A1: Within each main peak in x/y/px space exists only one high quality bunch of interest
at a time. As will be shown later, in cases where this assumption may not be true the
algorithm will make an automatic, implicit decision and retrieve the bunch that defines the
highest density feature within that peak for the longest period of time. This bunch is often
also the one exhibiting the highest acceleration.

As described in Section 3.2.3, only a fraction of all timesteps of a simulation are saved to file.
Even though the temporal resolution of the saved data is usually not high enough to resolve the
oscillation frequency of the wave, it is ensured by the user to be sufficient to resolve acceleration
and dephasing (i.e., the process during which a beam loses its coherency). It is, therefore, save
to assume that:

• A2: Between two consecutive timesteps a particle bunch does not disappear while a new
bunch appears at the same location (see also F7).
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5.6.2 Overview of the Algorithm

Particle beams are small compared to the total size of the data. The beam path analysis pipeline
is designed to enable quick data reduction and efficient detection of particle bunches. Using
state-of-the-art data management based on HDF5 [120], H5Part [123, 124] and FastBit [51, 122]
the algorithm is able to efficiently extract the portions of the data relevant for the analysis. In
order to be able to accurately detect and classify particle beams the analysis has to consider
information of the complete timeseries. The algorithm initially analyze each timestep separately
to collect information on the particle beams. This information allows for significant reduction of
the amount of data that need to be consider in the later analysis of the temporal particle paths.

Figure 5.23 provides a high-level overview of the general structure of the analysis pipeline.
The main steps of the analysis pipeline are explained in detail in Section 5.6.3- 5.6.6. The anal-
ysis distinguishes between two different types of particles. Candidate particles are all particles
that were ever detected by the analysis as being part of a particular bunch, i.e., particels that met
the bunch criteria described in Section 5.6.1 at least once in any timestep. Reference particles
are a subset of candidate particles found with a high frequency, i.e., particles with a high degree
of temporal persistence within a bunch.

For illustration purposes a medium-sized 2D dataset is used to describe the different steps
of the analysis. The later validation of the analysis then also presents results for a large 3D
dataset (see Section 5.6.7). The example dataset shows a fairly complex acceleration behavior

Initialization

Timestep Analysis [t
min

]

Timestep Analysis [n]

Merging Path Analysis Visualization

Figure 5.23: Overview of the algorithm design: The initialization step identifies which
timesteps need to be analyzed. Afterwards, each timestep is analyzed independently in order
to identify the most prominent particle bunch at each timestep. In the merging step the algorithm
then combines the information from the different timesteps and: (i) identify the number of de-
tected bunches; (ii) compute for each bunch a set of candidate particles; and (iii) compute for
each bunch a discrete frequency function describing how often the individual candidate particles
were found to be part of the bunch. In the particle path analysis all candidate particles are traced
over the complete timeseries and for each bunch a reference path is computed. Based on the
reference path the algorithm then identifies the different phases of a bunch, such as acceleration
and deceleration, and define for each candidate particle the distance to the bunch. After comple-
tion of the analysis process the user investigates the analysis results using dedicated visualization
methods.
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and contains bunches of different quality at high as well as low energy levels (see Table 5.2
dataset C for more details). The analysis detects in the example dataset two main particle bunches
referred to as first and second in the following. The first bunch is also detected first by the
analysis indicating that this bunch is formed earlier in time than the second bunch.

5.6.3 Initialization

The main purpose of the initialization step is to calculate the minimum timestep tmin indicating
which timesteps are relevant for the initial timestep analysis. As described earlier, a particle
beam consists only of accelerated particles, i.e., particles with high px values. At early timesteps
of the simulation no particles at a sufficient level of acceleration exist since the plasma waves
—induced by a laser pulse traveling through the plasma — are just forming. These timesteps are
hence not relevant in the initial timestep analysis described later in Section 5.6.4.

To prevent unnecessary calculations and to avoid detection of small bunches at timesteps
containing very few accelerated particles the algorithm employs a minimum timestep tmin. Often
the user has already a good understanding of when the first particle beams are forming in the
data based on earlier analysis. The algorithm, therefore, allows the user to either: (i) define tmin

manually as input parameter of the analysis or (ii) have the algorithm estimate a good value for
tmin automatically.

In cases where the user has no prior knowledge of the value for tmin the algorithm determines
tmin as follows. First, the analysis computes for each timestep t the number of particles h(t) that
satisfy the condition px > 1010ms−1. The same (user-defined) condition is also applied in the
later timestep analysis and ensures that only particles with a sufficient acceleration level are con-
sidered. Section 5.6.4.1 provides a more detailed explanation of the employed condition. Based
on h(t) the method then computes the average number ap of accelerated particles at timesteps
t with h(t) > 0, i.e., ap = ∑

n
t=0 h(t)

m , with n being the total number of timesteps and m being the
number of timesteps with h(t) > 0. tmin is then defined as the first timestep t with h(t) > ap. This
ensures that the analysis considers only timesteps (t ≥ ta) with a sufficient amount of accelerated
particles at which one can expect to find a well defined bunch that meets the criteria defined in
Section 5.6.1.

This automatic approximation works especially well in those cases where the number of
accelerated particles h(t) reaches a relatively stable state. In complex cases where the number
of accelerated particles h(t) varies largely over time the described approach may, however, lead
to a suggestion of a too late timestep. After the initialization is complete the beam path analysis
performs for each relevant timestep the analysis described in the next section.
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5.6.4 Timestep Analysis

The initial timestep analysis is aimed at identifying the most prominent particle bunch at each
timestep, i.e., the bunch with the highest px value. The goal is to identify a group of candidate
particles for the different bunches, i.e., a set of particles that potentially belong to a bunch.
Focusing only on these much smaller sets of candidate particles greatly reduces the workload for
the later particle tracing. The timestep analysis is performed independently for each timestep.
and consists of two main steps: i) data preparation and ii) bunch segmentation described in
Sections 5.6.4.1 and 5.6.4.2 (see Figure 5.24).

Initialization

Timestep Analysis [t
min

]

Timestep Analysis [n]

Merging Path Analysis Visualization

Compute 3D Histogram

Derive 2D Histogram Compute max­px surface Surface Segmentation  Density Segmentation

Data PreparationData Preparation Bunch SegmentationBunch Segmentation

Figure 5.24: Overview of the timestep analysis: The analysis uses a grid-based segmentation
approach to identify particle bunches of interest at each timestep. First, the analysis computes a
3D histogram in x/y/px of all accelerated particles (px > 1010ms−1). From the 3D histogram the
2D histogram in x/y is derived. Based on the information of the histograms the function pmax is
computed defining the maximum px value found at each (x,y) location of the used analysis-grid.
Segmentation of the surface defined by pmax allows for identification of the region of interest
(ROI) in physical space (x/y). A second density-based segmentation approach then identifies the
most condensed particle bunch within the ROI.

5.6.4.1 Data Preparation

The data preparation step is executed once for each relevant timestep (i.e., t ≥ tmin) and is aimed at
initializing all data structures needed for the later bunch segmentation step (see Section 5.6.4.2).
The bunch segmentation described later in Section 5.6.4.2 uses two grid-based data structures in
the bunch segmentation step of the analysis pipeline: i) a 2D analysis-grid defined in the physical
domain (x/y); and ii) a 3D analysis-grid defined in x/y/px space. The 3D analysis-grid describes
a scalar field defining how many particles belong to each grid point, i.e., the analysis computes a
3D histogram defined over the domain x/y/px. Associated with the 2D analysis-grid is a second
scalar field describing the maximum px value of all particles associated with each point of the
grid. In case of a 3D dataset the user may use the radial distance dr = 2

√
y2 + z2, y or z instead
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Figure 5.25: Visualizations of timestep t = 40 of the example 2D dataset consisting of≈ 2.4∗106

particles. a) All particles shown in physical space (gray) and all particles that satisfy the condition
(px > 1010)ms−1 (≈ 1.7% of all particles) colored according to px. b) Iso-contours of the particle
density shown on three slicing planes to illustrate the basic structure of the 3D particle density
in x, y, px. The iso-contours are colored according to their value with black/blue being low,
green/yellow being medium, and red being high density. The inset plot shows a close-up view of
the main region of interest containing a condensed particle bunch.

of y as second dimension of the 2D and 3D analysis grid. Since the example dataset used to
illustrate the different steps of the algorithm is a 2D dataset the following parts of this thesis
refer for consistency to the radial dimension always as y.

3D Histogram Computation: In the 3D histogram computation the algorithm computes: (i)
the count of each bin of the 3D histogram, and (ii) a set of bit vectors that indicate which particles
are associated with each bin of the 3D histogram.

According to F1 (see Section 5.6.1) a particle bunch of interest will consist only of acceler-
ated particles. The expected wake oscillation is up to px = 109ms−1 and the particle beams of
interest should be observed near px = 1011ms−1. At each timestep the analysis therefore consid-
ers only particles that satisfy the condition px > 1010ms−1 which ensures that only particles with
a momentum in x direction above the base acceleration of the wave are used while including all
particles that are potentially of interest. As illustrated in Figure 5.25a, this condition significantly
reduces the amount of raw data that needs to be accessed by the algorithm — i.e, usually to only
≈ 1−3% of all particles —, significantly improving the performance of the analysis.

To be able to identify condensed particle bunches at single timesteps the algorithm uses a 3D
histogram of x, y, and px with a resolution of usually 100 bins per variable and the described con-
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dition of px > 1010ms−1. Consistent with F6 (see Section 5.6.1), the algorithm does not consider
the transverse momenta py and pz at this stage of the analysis. In x and y the 3D histogram is
computed over the entire extension of the simulation window at the current timestep while using
the base threshold of px = 1010ms−1 as lower bound in px. The size of the simulation window
is constant in x and y over time, i.e., one can correlate bins of 3D histograms from different
timesteps directly via their index in (x,y). As illustrated in Figure 5.25b, the 3D histograms
will always be sparse with accelerated particles appearing only behind the laser pulse — located
roughly in the center of the simulation window — and most condensed around y = 0.

The later bunch segmentation (see Section 5.6.4.2) identifies those bins of the 3D histogram
containing a particle bunch of interest. To be able to efficiently access the data of the selected
bins this thesis introduces dedicated 3D histogram functions that compute the actual counts of
the 3D histogram as well as a set of bit vectors indicating for each non-empty bin which parti-
cles belong to the according bin. These bit vectors are compressed and provide a memory and
computationally efficient way for creating and storing the inverse mapping from a 3D histogram
to the original data. Bit vectors can efficiently be merged using bitwise OR operations, i.e., bit
vectors enable also efficient access of the data of many bins at once. Since the 3D histograms are
always sparse the memory overhead due to the bit vectors is in practice small, usually≈ 2−5MB

per timestep depending on the data distribution and size of the dataset.

Maximum px Function Computation: To be able to identify regions of high particle accel-
eration the algorithm computes, based on the information of the 3D histogram, the maximum px
function:

pmax(x,y) = max(px(x,y)), (5.2)

defined over the physical domain (x/y). This function associates with each point in physical
space the maximum px value of all particles found at that location. The algorithm approximates
this function by defining a 2D analysis-grid in physical space with the same resolution as the
3D histogram, i.e, usually 100 bins per variable. For each (x,y) column of the 3D histogram the
algorithm then computes the maximum px value by identifying the first bin (from top to bottom)
with a count larger than zero using the upper bin-boundary in px as reference. In cases where
outlier behaviors imposes a problem one could, e.g., also use the px value of the highest-density
bin of each (x,y) column as reference instead.

A density-based filtering of pmax ensures that the analysis is always focused on the areas of
highest particle density. First, the 2D histogram in x/y is derived from the 3D histogram by
adding up the counts of the each (x,y) column of the 3D histogram. For the 2D histogram only
the counts and no bit vectors are computed. The pmax function values of all points of the 2D
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Figure 5.26: Surface plot showing the approximated maximum px function pmax defined over
the x/y domain at timestep t = 40. Each point of the surface represents one column of the 3D
histogram in (x,y) and is located in its center. The z coordinate of each point is defined based on
the pmax function value computed for the according grid-point. In addition to the pmax surface
all particles with px > 1010ms−1 are shown colored according to px.

analysis-grid with an associated particle density of less than 3% of the maximum 2D density are
set to the minimum function value. This density-based filter removes small peaks in the outer
sparsely populated parts of the simulation window while preserving the main peaks of interest in
the center.

The algorithm approximates the value of the maximum px function pmax by smoothing the
computed pmax function values using the following smoothing-kernel:

 0.075 0.075 0.075
0.075 0.4 0.075
0.075 0.075 0.075



derived through empirical study. Figure 5.26 illustrates the structure of the derived surface at
timestep t = 40 of the example dataset. One can see that the derived surface approximates the
general structure of the function well. The maximum level of the surface is expected to be lower
than the peak px of the particles due to the used smoothing kernel. Peaks with a low support are
removed by the 2D density filter.
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5.6.4.2 Bunch Segmentation

The bunch segmentation is aimed at identifying a single particle bunch of interest at a given
timestep. This process is initially executed only once per timestep. Additional bunch segmen-
tations may then be performed at selected timesteps during the later merging process. The seg-
mentation of a particle bunch is performed in a two-step process. The algorithm first performs a
2D segmentation based on pmax to identify the region of interest (ROI) in physical space (x/y).
A second 3D density-based segmentation in x/y/px space then identifies the most condensed
particle bunch within the ROI.

The segmentation itself is based on region growing. While the neighborhood and stop criteria
are different for the 2D and 3D region growing the basic algorithm is similar. In the region
growing the analysis maintains two lists: i) a list of selected points, and ii) a list of candidate
points. The first list defines all points that have been identified as being part of the ROI and the
second list contains all points that potentially belong to the ROI but still need to be checked.
Initially the list of candidates contains only a single seed-point and the list of selected points is
empty. The segmentation function iterates through the list of candidates until no more candidates
remain. For each candidate the segmentation checks whether it satisfies a set of criteria (the so-
called stop criteria). If the candidate point meets the criteria then it is moved to the list of selected
points and its neighbors are added to the list of candidates, otherwise it is removed from the list
of candidates.

To identify the ROI in physical space the algorithm first executes a 2D segmentation based on
pmax. Using the global maximum of pmax as seed-point a 2D region growing is used to identify
the region in physical space associated with the seed. In this process the region growing uses the
4-neighbor stencil (see Figure 2.11) to define the neighbors of a given point of the 2D analysis-
grid. A given candidate point is added to the list of selected points if it does not define a minima
in x-direction of pmax neither in x/y/px nor x/px space. The second condition prevents bleeding
of the segmentation into secondary peaks of pmax. In this particular case the segmentation does
not use the strict definition of a minimum but define a point to be a minimum if it does not have
any neighbor in x-direction with a pmax value smaller than its own. The segmentation process is
designed to ensure that the ROI in physical space is closed and contains no holes.

The selection defined by the 2D segmentation is usually too large, i.e., it includes many parti-
cles in the vicinity of the bunch that do not actually belong to it. To ensure that the segmentation
result is always centered around the most condensed bunch a secondary 3D density-based seg-
mentation is performed within the given 2D ROI. In this process the segmentation uses the bin
of the 3D histogram that defines the highest density within the identified region in physical space
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Figure 5.27: a) Overview of the segmentation process as performed at timestep t = 21 of the
example dataset. The grid of the segmentation surface is shown in black. The points of the
surface –each corresponding to one x/y column of the 3D histogram– selected by the initial
surface segmentation step are shown in red and the corresponding area is highlighted in white.
All particles with px > 1010ms−1 are shown in black and all particles selected by the final 3D
density-based segmentation are shown in blue. b) Same as a but for timestep t = 40. c) Same
as b shown as a 3D rendering. The surface is the same as shown in Figure 5.26. The initial
surface segmentation defines the region of interest (ROI) in physical space. The density-based
segmentation then identifies the most condensed group of particles within the ROI.
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Figure 5.28: Example segmentation result at timestep t = 21 (a) and t = 40 (b) shown in x/px
space (see also Figure 5.27). The particles identified by the segmentation process are shown
in black, all other particles are shown in gray. The inset plots show a close-up view of the
detected bunches with additional iso-contours of the particle density colored using the indicated
color mapping. Due to the density-based segmentation approach the algorithm is able to detect
condensed particle bunches at high (b) as well as low (a) energy levels.
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as seed. The 3D region growing employs the 26-neighbor stencil (see Figure 2.11) and stop
if the density value of a candidate point is below 20% of the density-value of the seed. In the
later merging step of the analysis pipeline the IDs of the selected particles are used to identify
corresponding particles at different timesteps. After completion of the segmentation the algo-
rithm therefore loads the IDs of the particles associated with the selected bins. The bit vectors
computed together with the 3D histogram enable the algorithm to directly access the according
particle IDs.

Figure 5.27 illustrates the segmentation process for two selected timesteps of the example
2D dataset. Figure 5.28 then provides an overview of the result of the bunch segmentation at the
according timesteps. As will be shown later, the bunches shown here in fact define two different
main bunches of interest in the example dataset.

The bunch segmentation algorithm has several significant characteristics relevant for the later
merging and path analysis. First, the bunch segmentation is always centered around the highest
density and hence centered around the main bunch of interest. This ensures that the particles
that define the “core” of a bunch of interest are always found at a higher frequency, i.e., they are
found as being part of the bunch at more timesteps than particles that are in its larger vicinity.
Second, like most segmentation algorithms, the bunch segmentation described here may suffer
from under-segmentation (too large a selection) and over-segmentation (too small a selection)
errors. The potential effects of under- and over-segmentation are taken into account in the later
particle path analysis so that the beam path analysis deals robustly with these errors. In the
context of a cluster ensemble these effects are in some sense even desirable since they ensure
diversity. In the context of the complete analysis pipeline under-segmentation errors simply lead
to inclusion of particles distant to the actual bunch in the list of potential candidates. These
particles are identified later in the particle path analysis and do not affect the quality of the
analysis. The two-step segmentation process furthermore ensures that in all cases only particles
within a relatively small region in physical space are selected so that the amount of potentially
improperly selected particles is in general low. The potential effects of over-segmentation errors
are accounted for when selecting a set of reference particles for each bunch described later in
Section 5.6.6.2.

5.6.5 Merging

In the merging step of the analysis pipeline the information derived from the individual timesteps
is combined to: (i) identify the number of detected bunches, and (ii) define a consolidated de-
scription of each detected bunch consisting of a set of candidate particles and a discrete frequency
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Figure 5.29: Overview of the merging process: The merging step of the algorithm first cor-
relates the detected bunches via their given reference location in physical space. Instead of one
bunch per timestep one now has a set of bunches each existing over a series of timesteps. In
the initial timestep analysis the algorithm identified the single most prominent bunch at each
timestep. In practice several bunches of interest may coexist at the same time, e.g., one bunch in
the first and another one in the second period of the wave behind the laser pulse. The algorithm,
therefore, traces the identified bunches forward and backward in time — performing additional
segmentations at the individual timesteps — to complete the information about each bunch and
ensure accuracy of the initial analysis. During the forward-tracing initially separated bunches
may also be identified as actually being the same and merged. Each particle detected at least
once as being part of a particular bunch is added to the according list of candidate particles. In
this process the merging function counts for each candidate particle how often it was found as
being part of a specific bunch.

function. The term frequency is used here to describe for each candidate particle how often —
i.e., at how many timesteps — it was found as being part of the bunch (see Figure 5.29).

The problem one has to solve in the merging is twofold; the algorithm has to solve: (i) a
correspondence problem to identify which segmentations from the different timesteps define the
same bunch, and (ii) a combination problem in order to define a single consolidated description
of each of the different bunches. From the initial timestep analysis the merging step receives two
different inputs from each timestep: (i) a reference location describing the principle location of a
bunch —here defined as the x-index xi(t) of the segmented maximum of the function pmax—, and
(ii) a list of particle IDs describing which particles were identified as being part of the detected
bunch.

To solve the correspondence problem the merging relates bunches from different timesteps
via their given reference location xi(t). As explained earlier in Section 3.2.3, the simulation
employs a moving window approach in which the simulation window is moved along the cavity
while the laser pulse is traveling through the plasma. The simulation window, as well as the
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accelerated particles, move roughly at the same speed as the laser pulse, i.e., speed of light
c. Furthermore, the size of the simulation window in x is constant. The relative x−location
of maxima in pmax is therefore expected to be relatively stable, i.e., their maximum movement
in x-direction between two consecutive timesteps is restricted by the difference of the particle
velocity and the speed of light which is small in the case of relativistic particles. In the case of
100 bins per variable the maximum slippage xs in x between two time step is therefore usually
one to two bins. In order to identify whether two bunches detected at timestep t and t + 1 are
the same the merging only needs to check whether xi(t)− xs ≤ xi(t + 1) ≤ xi(t)+ xs. This has
shown in practice to be a reliable approach for identifying corresponding bunches since it does
not make any hard assumptions on the minimal temporal resolution of the data. In terms of the
temporal resolution of the data the analysis here only assumes that the assumption A2 is true (see
Section 5.6.1).

By using xi(t) to correlate different bunches the algorithm furthermore assumes that A1 :
“Within each ROI in x/y space only one high quality bunch of interest exists at a time.” is true
(see Section 5.6.1). Since particle bunches accelerate and decelerate over time their location in
x/y/px space within the corresponding ROI will change over time. In practice A1 has shown to
be a reasonable assumption. In cases where several potential bunches exist within the same peak
in x/y/px space, the merging procedure combines the two bunches. As explained below, in this
case the algorithm will make an automatic, implicit decision and retrieve the bunch that defines
the highest density feature for the longest period of time which usually is the bunch that shows
the highest acceleration.

In order to define a single consolidated description for the different bunches the merging
function needs to combine the information from the different times steps, i.e., the lists of particle
IDs defining a bunch. The goal here is to define for each bunch: (i) a list of candidate particles
describing which particles potentially belong to the bunch, and (ii) identify a list of reference
particles that have a high probability of belonging to the bunch. In order to define the list of can-
didate particles the algorithm simply merges the particle ID lists from the different timesteps that
define the same bunch. In this process the merging function counts for each particle ID how often
the according particle was found as being part of the bunch. For example, when a particle was
found at 10 different timesteps as being part of a particular bunch then this particle was assigned
a count of 10. This so defined function lb(idi) defines for each bunch b a discrete frequency
measure also referred to as bunch frequency. The bunch frequency indicates the likelihood of a
particle with ID = idi of being part of a particular bunch, i.e., the more frequent a particle was
detected as being part of a bunch the more likely it is that this is in fact the case. Based on lb
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Figure 5.30: Overview of the merging process. In the example dataset bunches are initially
segmented at the locations indicated by the thicker lines. In the merging process the algorithm
then detects two main bunches shown in red and green. In the forward-tracing step additional
segmentations are carried out for the first bunch. The thinner yellow and magenta lines indicate
the final results after merging for the two bunches. One can see that in case of the example dataset
additional bunch segmentations are only carried out in the forward-tracing of the first bunch.

the algorithm then identifies a set of reference particles for a particular bunch b by selecting the
particles with the highest bunch frequency values lb. More details later in Section 5.6.6.2.

Having defined how the algorithm solves the correspondency and combination problem the
initial merging can be computed. The merging function iterates through the results from the
initial timestep analysis and check for the bunch detected at the current timestep t whether it
corresponds to the previous bunch detected at timestep t− 1. If the two bunches are the same
then their particle ID-lists are merged and lb is updated accordingly. If the two bunches do not
correspond then the number of detected bunches is increased, a new list of candidate particles is
created for the new bunch as well as a new bunch frequency function lb+1. The thick data lines
in the plot shown in Figure 5.30, illustrate the results from the initial merging for the example
dataset.

The initial timestep analysis detected only the single most prominent bunch at each timestep.
To account for the fact that several bunches may coexist at the same time (see Section 5.6.1, F7),
the algorithm first traces the detected bunches forward and afterwards also backward in time in
order to complete the information for each bunches. In the following the last timestep at which
the algorithm found a bunch b is referred to as tlast(b). Starting from (tlast(b)+ 1) the forward-
tracing checks if a maximum of the function pmax that can be segmented exists at approximately
the same location (±xs) where the bunch b was previously found (i.e., xb(tlast(b))). If this is
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Figure 5.31: a) Bunch frequency l1 of the first bunch shown at its peak px momentum at timestep
t = 24. b) Bunch frequency l2 of the second bunch shown at its peak px momentum at timestep
t = 43. The candidate particles of the according bunch are colored according to the associated
bunch frequency values indicating how often a particle was found as being part of the bunch. All
particles not detected as candidates for the according bunch are shown in gray in both figures.
Note, here only a subset of the complete simulation window containing all candidate particles
of the displayed bunch is shown. One can see that in both cases the particles with the highest lb
values are highly localized defining the “core” of each bunch.

the case then the algorithms performs the bunch segmentation step for the identified location
and merge the retrieved information with the current description of the bunch b, i.e., merging
function updates the list of candidate particles, tlast , and lb accordingly, and continue with the
forward-tracing. If there is no maximum that can be segmented at the according location then the
forward-tracing is terminated for the current bunch b and the forward-tracing function switches
to the next bunch (b+1). In the forward-tracing the algorithm may also detect that two previously
separated bunches are actually the same. This may be the case when two bunches (e.g. b1,b3)
correspond via their principle location but the according bunch was previously not segmented at
all timesteps, e.g., the bunch was only segmented at timestep t and t + 2. If the forward-tracing
now detects that the same bunch also exists at timestep t +1 then it has closed the temporal gap
in the description of the bunch indicating that the previously separated bunches b1 and b3 are
actually the same. In this case the descriptions of these bunches are merged after closing the
temporal gap and the forward-tracing is continued.

Similar to the forward-tracing the algorithm now also has to trace the different bunches back-
ward in time. Note, in contrast to the forward-tracing no checks for whether two previously
separated bunches are actually the same are necessary in the backward-tracing. All these cases
have already been resolved by the forward-tracing.

Figure 5.30 illustrates the merging process for the example dataset. In this case the beam
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path analysis detected two different bunches. Initially the first bunch was only detected at
timesteps t = [20,22]. The forward-tracing then found that the first bunch also exists at timesteps
t = [23,28] and added the according information to the initial description of the bunch. The
backward-tracing did not result in any additional information in this particular case. Note, when
performing additional bunch segmentations in the forward and backward-tracing the algorithm
only needs to re-execute the actual bunch segmentation (see Section 5.6.4.2) but not the expen-
sive data preparation step (see Section 5.6.4.1) of the timestep analysis.

The plot shown in Figure 5.30 provides a first rough overview of the lifetime of the detected
bunches. The different bunch frequency functions lb shown in Figure 5.31 then describe a first
approximated classification of the different bunches. One can see that in both cases all particles
with very high lb values — l1≥ 7 (with max(l1) = 9) and l2≥ 19 (with max(l1) = 22) — are each
located within a confined region in physical space. These are also the particles the algorithm will
define later as references for the first and second bunch respectively. In case of the second bunch
(see Figure 5.31b), one also sees a larger number of particle with medium bunch frequency values
l2≈ 11 appearing further in the back at a larger distance to the main bunch. This is due to the fact
that these particles form a high-density feature in x/y/px space during early timesteps t ≈ 23.
This bunch appears, however, at very low energies and decelerates quickly whereas the second
main bunch appears at high energies and exists for a longer period of time. The particles with
highest l2 values are therefore all located within the main bunch of interest and are condensed in
physical space.

5.6.6 Particle Path Analysis

The goal of the particle path analysis is to compute an accurate description of the detected particle
bunches based on their complete temporal history. After the merging process the number of
particles the analysis needs to consider has greatly been reduced to a set of candidate particles
for each bunch. As illustrated in Figure 5.32 the particle path analysis consists of the following
steps: (i) particle tracing (see Section 5.6.6.1), (ii) reference path analysis (see Section 5.6.6.2),
and (iii) path distance computation (see Section 5.6.6.3).

5.6.6.1 Particle Tracing

As the first step of the particle path analysis the particle tracing computes the complete temporal
paths of all candidate particles of the current bunch. One, therefore, needs to locate the candi-
date particles at every timestep of the simulation. Using FastBit the algorithm can access the
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Figure 5.32: Overview of the particle path analysis: This step is performed independently
for each identified bunch. First, all candidate particles of a bunch are traced over the complete
timeseries. Based on the bunch frequency function lb the algorithm defines a set of reference
particles for the bunch and derive from their paths a single reference path describing the tempo-
ral evolution of the bunch. Based on the reference path the algorithm first computes the different
temporal phases of the according bunch, defining, e.g., when the bunch was formed or acceler-
ated. Afterwards, the path distance computation defines for each candidate particle the distance
of its path to the reference path. The computed path distance fields allow the user to accurately
describe the particle bunch.

relevant data efficiently by executing an according equality query of the form ID = id1||ID =
id2||....||ID = idn at all time steps of the data set and then load the associated data.

The number of candidate particles per bunch largely depends on the resolution of the raw
data, i.e., the number of particles per timestep. In practice the number of candidate particles is
usually in the order of the magnitude of a couple of thousand up to several ten-thousand particles.
The amount of data that need to be accessed in order to define the complete temporal history of
all candidate particles is therefore in practice small and can efficiently be managed even on a
regular desktop computer. The same basic method for tracing particles was also employed in
earlier work to enable fast visual exploration of the data [158].

5.6.6.2 Reference Path Analysis

To define the distance of a particle to the current bunch b the algorithm uses a reference path
to describe the temporal evolution of the bunch. To compute the reference path the algorithm
therefore needs to first identify a set of reference particles that characterize the bunch.

As mentioned earlier, the bunch frequency function lb (computed during the merging) can be
used effectively to identify a group of particles that define the “core” of the bunch. Particles with
very high lb values define a group of particles that were consistently detected as being part of
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Figure 5.33: a) Temporal phases of the first bunch. b) Temporal phases of the second bunch. Both
figures show the paths of all candidate particles of the according bunch in gray. The reference
particles and their paths are shown in addition colored according to the different beam-phases.
The second bunch (b) does not show a post-deceleration phase because the simulation terminated
before the bunch had completed deceleration.

the bunch b. Furthermore, the bunch segmentation is always centered around the highest density
feature within the according peak in x/y/px space, i.e., the density core of the bunch. Particles
with very high lb values therefore define a compact group of particles centered at the density
core of the bunch (see also Section 5.6.5 and Figure 5.31). Due to potential over-segmentation at
single timesteps during the initial timestep analysis one may in practice only find a few particles
with the maximum lb value for a bunch. The algorithm can therefore not just simply select only
those particles with the maximum lb value but needs to ensure that it selects a sufficient amount
of particles with high lb values to describe the bunch accurately. The reference path analysis,
therefore, first computes the histogram for lb — defining how many particles were found at each
discrete bunch frequency level — and then detects the local maximum m of the histogram with
the highest lb value. All particles with lb ≥ m are then chosen as reference for the current bunch
b. In case of the example dataset the reference levels for the two detected bunches are l1 = 7
(with max(l1) = 9) and l2 = 19 (with max(l2) = 22), respectively.

From the temporal paths of the reference particles the algorithm then computes a single ref-
erence path describing the temporal behavior of the current bunch b by computing the average in
x,y,z, px, py, pz of the reference particles at each timestep t. Based on the reference path different

172



temporal phases of the bunch are defined as follows:

• Pre-Formation: Early time frame during which less than 80% of the reference particles
are present, i.e., the bunch is not well characterized yet.

• Formation: Early time frame during which more than 80% of the reference particles are
present but the momentum in x direction is still low, i.e., px < 1010ms−1.

• Acceleration: Time frame directly after the beam formation phase during which the beam
is constantly accelerated until it reaches its peak energy, defined via px. Note this may not
be the global maximum in px for the particles of the bunch. As illustrated in Figure 5.33a,
particles may undergo secondary phases of acceleration after the beam of interest has lost
its coherency.

• Deceleration: Timeframe directly after the beam has reached its peak px momentum and
is constantly decelerating.

• Post-Deceleration: This phase includes all timesteps after the beam has completed its
deceleration phase. The beam has lost its coherency so that its behavior is undefined during
this phase. For example, some of the particles may become trapped in secondary periods
of the wave and undergo a secondary phase of acceleration (see Figure 5.33a), while other
particles may leave the simulation window and are no longer traceable.

Figure 5.33 illustrates the different phases of the two bunches detected in the example dataset.
The fact that no pre-formation phase can be seen along the reference paths of the two bunches in-
dicates that most reference particles (> 80%) enter the simulation window at the same timestep.
When comparing the paths of the reference particles of the two bunches shown in Figure 5.33a
and b, one can see that different bunches may show a different acceleration behavior. Informa-
tion on the different phases of a bunch provides the user with valuable information on which
timesteps are of interest for visualization and other types of analysis. The algorithm also uses
this information in the later path distance computation in order to be able to accurately classify
the detected particle bunches (see Section 5.6.6.3).

5.6.6.3 Path Distance Computation

The path distance computation is the final step of the main analysis with the goal to define
for each candidate particle its distance to the bunch, i.e, the distance of the particle’s path to the
reference path of the bunch. Based on the path distance, accurate classification of a particle bunch
becomes possible. The path distance function should fulfill the following basic requirements:
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• It should be smooth and allow the user to effectively define the bunch with respect to
pre-knowledge and current analysis requirements.

• The function should be intuitive and physically meaningful.

• Function values should have a physically meaningful scale.

• Function values, and in this way classifications of different bunches, should be comparable.

In order to avoid any non intuitive normalization, achieve comparability, and ensure that
function values are at a physically meaningful scale the algorithm computes not a single but two
independent path distance functions. In the case of LWFA particle data exist essentially two
different main data spaces: (i) physical space with the dimensions x, y, z; and (ii) momentum
space with the dimensions px, py, pz. In these two spaces one can directly define the standard
Euclidean distance with no need for normalization. The Euclidean distance in physical space
between two particles with index i and j at time t is defined as:

ds(i, j, t) = 2
√

(x(i, t)− x( j, t))2 +(y(i, t)− y( j, t))2 +(z(i, t)− z( j, t))2 (5.3)

With x(i, t), y(i, t) and z(i, t) being the location of the particle with index i at time t in x, y, and z

respectively. The according distance in momentum space is defined as:

dm(i, j, t) = 2
√

(px(i, t)− px( j, t))2 +(py(i, t)− py( j, t))2 +(pz(i, t)− pz( j, t))2 (5.4)

With px(i, t), py(i, t) and pz(i, t) being the momentum of the particle with index i at time t in x,
y, and z direction respectively. In the case of a 2D simulation the terms referring to z and pz are
ignored.

The distance between the temporal path of two particles with index i and j in physical and
momentum space is defined as the average distance along their path, i.e.:

ds(i, j) =
∑

tl
t=tk ds(i, j, t)

nt
(5.5)

dm(i, j) =
∑

tl
t=tk dm(i, j, t)

nt
(5.6)

With nt = tl− tk + 1 (with tl > tk) being the number of timesteps considered in the computation
of the path distance. Figure 5.34 illustrates the computation of the distance between the path of
two particles.
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Figure 5.34: Illustration of the path distance computation for two particles with index i and j in
2D physical space x/y. The distance in momentum space is defined similarly.

The distance of a particle to a bunch is defined as the distance of the particle’s path to the
reference path of the beam. During the pre-formation and formation phase a beam is not well
defined yet. During the deceleration phase a beam looses its coherency and has fallen apart during
the post-deceleration phase. The only timeframe during which a beam is well defined is during
the acceleration phase. The path distance computation is therefore restricted to the acceleration
time frame of the bunch by defining tk and tl accordingly. The algorithm then computes for
each candidate particle the respective distances ds and dm to the reference path of the current
bunch. These distances fulfill all basic requirements mentioned above; they are in a physically
meaningful scale —ds in meter, dm in ms−1—, intuitive, physically meaningful and smooth. Path
distances from different bunches are also comparable, i.e., a basic distance of, e.g., ds = 10−6m

or dm = 1011ms−1, have the same basic meaning for different bunches. In order to define which
particles actually belong to a bunch the user then needs to define according thresholds in ds

and dm to define the maximally allowed distance in physical and momentum space to the beam.
In order to compare different bunches a user may use the same threshold values for different
bunches.

While this thesis describes the use of the average distance along particle paths to define a
bunch, other distance functions can easily be defined to describe other beam characteristics.
Other distance functions of interest may, e.g., be the minimum distance along paths or also just
the distance at the timestep where a bunch has reached its peak momentum in x-direction (px).

Figure 5.35 and 5.36 provide an overview of the two bunch classification functions ds and dm

for the two bunches detected in the example dataset. One can see that in both cases the analysis
was able to identify the bunch properly and that ds and dm define in each case the same principle
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Figure 5.35: Overview of the path distance fields for the first bunch detected in the example
2D dataset illustrating that dm and ds accurately classify the bunch. Note, here all candidate
particles are shown, i.e., no thresholds in ds or dm have been applied in the images. The left
column of the table shows the distance in momentum space dm and the right column the distance
in physical space ds. Color indicates dm and ds respectively. Third row: Temporal paths in x/px
space of all candidate particles. Fourth row: Particles in x/px space. Fifth row: Particles in x/y
space. The particle images indicate the state of the bunch at timestep t = 24 when the bunch has
reached its peak momentum in px. Note, the bottom images show only a subset of the simulation
window containing all detected candidate particles of the bunch. One can see that both distance
functions define the bunch well. Results after thresholding are presented later in Section 5.6.7
(see Figure 5.38(C1)).
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Figure 5.36: Overview of the path distance fields for the second bunch detected in the example
2D dataset illustrating that dm and ds accurately classify the bunch. Note, here all candidate
particles are shown, i.e., no threshold in ds or dm have been applied in the images. The left
column of the table shows the distance in momentum space dm and the right column the distance
in physical space ds. Color indicates dm and ds respectively. Third row: Temporal paths in x/px
space of all candidate particles. Fourth row: Particles in x/px space. Fifth row: Particles in x/y
space. The particle images indicate the state of the bunch at timestep t = 43 when the bunch has
reached its peak momentum in px. Note, the bottom images show only a subset of the simulation
window containing all detected candidate particles of the bunch. One can see that both distance
functions define the bunch well. Results after thresholding are presented later in Section 5.6.7
(see Figure 5.38(C2)).
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bunch. As expected, there are also outliers in physical as well as momentum space, i.e., particles
that show a similar acceleration behavior as the bunch but are distant in physical space as well as
particle that stay close to the bunch in physical space but are accelerated differently. By applying
according thresholds in ds an dm one can accurately define each of the two bunches.

5.6.7 Validation

This section presents results of the beam path analysis for a variety of different datasets described
in Table 5.2. Figure 5.37 to 5.39 give an overview of the results our method achieves on theses
different datasets. For each bunch the resulting phase space diagram (x/px) is shown at the
timestep when it has reached its peak momentum in px. These plots show all candidate particles
in blue and all particles that satisfy the default selection condition (ds < 2∗10−6)&&(dm < 1010)
in red. This condition ensures only particles that are close to the bunch in momentum as well as
physical space are selected. Depending on the current requirements a researcher may in practice
choose lower or higher thresholds for ds and dm. As the different plots of ds and dm illustrate,
both functions are smooth and enable the user to accurately define each bunch.

Dataset Type Size per
timestep in
MB≈

Total size
in MB≈

Number
of
timesteps

Particles
per
timestep≈

A 2D 35 1,320 38 405,000
B 2D 128 4,606 36 1,600,000
C 2D 190 11,034 58 2,400,000
D 2D 62 13,990 226 610,000
E 3D 23,999 623,964 26 229,850,000
F 3D 7,091 212,733 30 90,790,000

Table 5.2: Description of the simulation datasets used for validation.

Traditionally thresholding in px is used to identify high energy particles and the beam(s) of
interest. In order to identify proper thresholds and timestep, a researcher investigates movies of
a variety of plots, a complex and time-consuming process. In many cases a single threshold may
not be sufficient to isolate the beam particles of interest, e.g., when two high energy bunches
exist at the same time as, e.g., in dataset C. The main deficiency of manual thresholding are that
it is arbitrary, time-consuming, and requires manual inspection of the dataset.

As summarized in Table 5.2, the datasets used in this validation are of varying temporal
as well as spatial resolution, ranging from 26 to 226 dumped timesteps and ≈ 405,000 to
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Figure 5.37: Overview of the analysis results for dataset A and B illustrating that the algorithm is
able to accurately detect the relevant bunches. In the main figure all detected candidate particles
are shown in blue and all particles that satisfy the condition (ds < 2∗10−6)&&(dm < 1010) are
shown in red. The applied condition ensures that only particles close to the bunch are selected.
The cutout plots show the distance functions dm and ds respectively. Each bunch is shown at the
timestep when it has reached its peak px level.
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Figure 5.38: Overview of the analysis results for dataset C and D illustrating that the algorithm
is able to accurately detect the relevant bunches (see also Figure 5.37).
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Figure 5.39: Overview of the analysis results for the large 3D dataset E illustrating that the
algorithm is able to accurately detect the relevant bunches (see also Figure 5.37). The bottom
image shows a volume rendering of the plasma density (gray) and the two selected bunches
colored according to px at timestep t = 23 illustrating the location of the two bunches within the
plasma wave.
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≈ 229,850,000 particles per timestep. Dataset F was produced using an older version of the
simulation code and does not contain unique particle IDs. In the context of the beam path anal-
ysis dataset F is only used to evaluate the performance of the computation of 3D histograms and
3D bin-queries for which IDs are irrelevant.

As Figure 5.37(A) shows, the beam path analysis algorithm reliably detects particle bunches
even in datasets with low spatial resolution. Dataset B and C are two 2D dataset with medium
spatial resolution. Dataset D is also a 2D dataset but with high temporal resolution. The results
for datasets B-C are shown in Figure 5.37(B) and 5.38(C,D) respectively. Dataset E is a massive
3D dataset with≈ 229,850,000 particles per timestep. Due to the large amount of data that needs
to be stored just for a single timestep only few timesteps are written to file. The sheer size of this
dataset as well as its low temporal resolution make detection of particle bunches a challenging
tasks. As shown in Figure 5.39, even in this most challenging case the method is able to reliably
detect the two main bunches of interest.

5.6.8 Performance Evaluation

This section presents an analysis of the performance of the beam path analysis algorithm and
its different parts. Section 5.6.8.1 describes the performance of the 3D histogram computation
used in the timestep analysis (see Section 5.6.4). Afterwards, Section 5.6.8.2 characterize the
performance of 3D bin queries in , i.e., how much time does it take to identify the particles
located within a set of selected bins of a 3D histogram. Both, the 3D histogram computation
as well as 3D bin queries, are crucial parts of the initial timestep analysis (see Section 5.6.4)
aimed at identifying particle bunches of interest at a particular timestep. The performance tests
are performed based on a representative timestep of the medium sized 2D dataset (C) and a 3D
dataset (F) (see Table 5.2) containing a condensed particle bunch of interest. Section 5.6.8.3 then
analyzes the serial performance of the complete analysis algorithm using the datasets described
in Table 5.2. The serial analysis tests are aimed at characterizing the overall performance of the
beam path analysis algorithm as well as the performance of the different parts of the pipeline. A
detailed analysis of the performance of the particle tracing using FastBit was already presented
earlier in Section 5.4.5.

For all performance tests described in Sections 5.6.8.1 - 5.6.8.2 a workstation equipped with
two 2GHz dual core AMD OpteronTM270 processor, 8GB running SuSE Linux was used. In the
serial performance the tests only one of the processing cores is actually used by the program.

182



5.6.8.1 Computing 3D Histograms

This performance test is aimed at characterizing the performance of the computation of 3D con-
ditional histograms. The goal is to characterize the speed-up achieved through the use of FastBit
for computing the histograms as well as the overhead for computing the bit vectors in addition
to the bin counts. This performance study, therefore, compares the performance of the following
different implementations:

• H1: Bitvectors: This is the implementation used in the analysis code. FastBit first evalu-
ates the condition and then computes for each non empty bin a bit vector indicating which
particles belong to the according bin. From these bit vectors the counts of the 3D histogram
are then derived.

• H2: FastBit: This implementation uses FastBit to first evaluate the condition of the his-
togram. Afterwards the counts of the histogram are computed based on the selected parti-
cles only.

• H3: Sequential: This variant does not make use of FastBit as acceleration data struc-
ture. The implementation performs a sequential scan through all particles and checks for
each particle if it satisfies the given condition and updates the counts of the 3D histogram
accordingly.

For each implementation a series of 3D histograms in x, y, and px are computed with vary-
ing numbers of bins per variable. As in the timestep analysis the test-code uses the condition
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Figure 5.40: Timings for serial computation of conditional 3D histograms.
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(px > 1010)ms−1. All histograms are computed over the complete data range of the according
variables. The test-code repeats each measurement twenty times while here the average timings
are reported.

Figure 5.40 shows the performance of the different implementations for the example timesteps
of dataset C and F. For the smaller 2D dataset H2 and H3 show similar performance. For the
larger 3D dataset H2 then shows a much better performance than H3. This is expected since the
relative cost for evaluating the condition using FastBit compared to the additional cost for also
traversing the particles that do not satisfy the condition will decrease with increasing file size.
For less than≈ 150 bins per variable H1 is in general slower than H2 by a roughly constant factor
of ≈ 1.3 to ≈ 2. For larger numbers of bins the performance of H1 decreases faster than for H2.
This is due to the fact that besides the counts of the histogram the test function H1 also has to
maintain a secondary data structure (the bit vectors) which requires random access to memory.
Updating this data structure will become increasingly expensive the larger it becomes. Note, the
beam path analysis typically uses only ≈ 100 bins per variable where the cost of maintaining the
bit vectors is modest. As the next section shows, the use of bit vectors significantly improves the
performance of 3D bin queries and the additional time needed to compute and maintain the bit
vectors is well spent.

5.6.8.2 Evaluating 3D Bin Queries

As part of the bunch segmentation process the beam path analysis algorithm needs to identify
which particles are located within selected bins of a 3D histogram. As described earlier, the
algorithm uses a set of bit vectors — computed during the 3D histogram computation — in order
to be able to access the data of these particles efficiently. In case that this inverse mapping from
the 3D histogram back to the original data space is not available then one will have to evaluate a
corresponding query in order to decide which particles are associated with the selected bins. For
each bin such a query takes the form of:

[(xi ≥ x)&&(x < xi+1)&&(y≥ yi)&&(y < yi+1)&&(px≥ pxi)&&(px < pxi+1)] (5.7)

The parameters xi, yi, pxi and xi+1, yi+1, pxi+1 indicate the lower and upper boundaries of the
bin with index i respectively. In a typical segmentation not one, but several bins are selected so
that many of these queries need to be combined via OR (||). For example, if 10 bins are selected
then one has to evaluate a query consisting of 60 conditions combined via AND (&&) and OR
(||).
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The test-code used for the performance tests described in this section simulates the segmen-
tation process by selecting the n most populated bins. The test-code then increases n to analyze
the performance with increasing size of the selection and query complexity. This performance
study compares the following different implementations:

• Q1: Bitvectors: This is the version used in the actual analysis code. The bit vectors of
the selected bins are first merged and then FastBit is used to load the IDs of the selected
particles.

• Q2: FastBit: This implementation uses FastBit to evaluate the segmentation query and
then load the IDs of the selected particles only.

• Q3: Sequential: This implementation first performs a sequential scan through the data to
evaluate the query. The test function first loads the data of all particles in x, y, and px and
then checks for each particle whether it suffices the query. Since the different bin-queries
are combined with OR the test function can stop this process for each particle as soon as
the particle has been identified as being part of a selected bin. Furthermore, the selected
bins are sorted in decreasing order with respect to their counts. If N is the total number of
particles, M the number of selected particles, and B the number of selected bins then one
needs to perform in the worst case: (N− M

2 ) ∗ (B ∗ 6) compare operations to evaluate the
query. Afterwards the test function again loads the IDs of the selected particles.
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Figure 5.41: Timings for serial computation of 3D bin queries. Note the logarithmic scale on the
y-axis showing the time in seconds. One can see that the data access using the bit vectors (Q1)
is significantly faster than when having to evaluate a 3D bin query (Q2 and Q3).
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Figure 5.41 shows the performance of the different implementations for the example timesteps
of dataset C and F. The test-code repeated each measurement ten times while here the average
timings are reported. Q2 and Q3 show a similar performance in the 2D case. For the larger 3D
data file the sequential scan (Q3) performs better than the implementation using FastBit (Q2).
To answer 3D bin queries of the form shown in Equation (5.6.8.2), FastBit invokes the indices
on x, y and px separately. Currently, FastBit is not able to share intermediate results computed
for different bins and therefore performs considerable amount of redundant work. Instead of
optimizing this query evaluation procedure, having the 3D histogram computation returning bit
vectors indicating which particle are associated with each bin has shown to be a more efficient
approach. Compared to both, Q2 and Q3, the implementation used in the analysis-code (Q1)
shows an outstanding performance in all cases. Even in the case of the relatively small 2D
dataset when just selecting 10 bins one sees a speed-up of≈ 258 compared to Q2 and a speed-up
of ≈ 370 compared to Q3. When comparing Q1 to Q2 or Q3 in the case of the larger 3D dataset
then one sees even higher speed-ups of≈ 4500 when selecting only ten bins and > 11,000 when
selecting more than 100 bins. The additional time needed to compute the bit vectors is justified
by the large speed-up gained during the evaluation of segmentation results (and therefore also
the merging).

5.6.8.3 Serial Performance of the Analysis Algorithm

The serial performance tests of the algorithm presented in this section were performed on a sys-
tem equipped with eight 2GHz dual core AMD OpteronTMProcessor 870 with 8GB of memory
per core running Ubuntu Linux. For the serial analysis only one core was used and the memory
limit was set to 8GB while the peak memory usage of the analysis did not exceed 2.5GB in any
case. The peak memory usage is reached in the case of dataset D due to its many timesteps and
hence the large amount of data and information that is acquired in the initial timestep analysis.

Figure 5.42 shows the timings for the analysis of the datasets described in Table 5.2. Each
measurement was repeated ten times while here the timing of the run with the median total
analysis time is reported. One can see that even when run in serial, the beam analysis algorithm
shows very good performance even for very large datasets. In order to give an overview of the
complete performance of the algorithm, the minimum timepoint computation was executed for
all datasets. As mentioned earlier, in practice a user often has already a good understanding of
when the first particle beams are forming so that the minimum timepoint computation is often
omitted.

The initialization step is where the algorithm first touch all necessary files and access meta-
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Figure 5.42: a) Absolute timings for the serial analysis of five different datasets using the beam
path analysis method. The length of each horizontal bar represents the total time used for the
complete analysis of the according dataset. b) Relative timings for the different steps of the
analysis pipeline as percentage of the total analysis time. In both figures color is used to indicate
the timings of different parts of the algorithm. In all cases the histogram computation and the
particle tracing are the most expensive analysis steps. This is expected since these are the two
main steps during which the raw data needs to be accessed. One can see that the algorithm shows
good performance in all cases and scales well with increasing dataset size.

data. The initialization time largely depends on the time needed for the first disk access. Overall
the 3D histogram computation and the particle tracing are the most expensive steps of the analysis
pipeline. This is expected since these are the two main steps where the algorithm needs to access
larger portions of the raw data. The particle tracing then needs to perform a series of equality
queries to extract the data of a group of particles from each timestep based on their IDs and merge
the data to define the temporal particle paths. The particle tracing is particularly expensive in the
3D case and requires here the majority of the time. The performance of the particle tracing was
described earlier in Section 5.4.5. In a realistic use case scenario speed-ups of two orders of
magnitude were achieved using FastBit compared to a sequential scan method. Besides the 3D
histogram computation and the particle tracing also the minimum timepoint computation requires
a considerable amount of time. This is due to the fact that the minimum timepoint computation
needs to perform a hit count of how many particles satisfy the query (px > 1010) at all timesteps.
Using FastBit the algorithm is able to perform this hit count efficiently using only the bitmap
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index for px (without loading any raw data).

The actual analysis steps, i.e., segmentation, evaluation, merging, and path distance compu-
tation, are then very fast. This is mainly due to the overall structure of the pipeline allowing the
independent analysis of each timestep. The performance of the bunch segmentation (and surface
computation) is independent of the size of the dataset and depends only on the resolution of the
underlying grid-based data structure (and the number of timesteps). As described in the previous
section, the outstanding performance of the evaluation of the segmentation — in which the seg-
mentation needs to identify the particles located within a set of histogram bins — is due to the
bit vectors computed together with the 3D histograms which allow the segmentation to directly
access the required data. The time spent for merging is also very short (< 0.9s) in all cases.
The performance of the merging step largely depends on the number of bunch segmentations
performed in the forward- and backward tracing. However, the expensive data preparation —
consisting of the 3D histogram and surface computation — is at this point already completed for
all timesteps so that the merging-function here only need to execute the much faster segmentation
and evaluation step, explaining the short execution times of the merging in all cases.

5.7 Integrating Visualization and Analysis

In the case of LWFA research, simulations are usually performed on large supercomputers (here
at NERSC) and the data produced is stored off-site at dedicated data storage facilities. The
proposed automated analysis algorithms are, therefore, implemented as independent tools to
enable the analysis to be executed where the data is stored. Separating the automated analysis
tools from the visualization also has the advantage that the analysis algorithm can be optimized
independently from the visualization resulting in lower development cost and likely also better
runtime performance. However, for the purpose of the actual investigation of the analysis results
dedicated links between the automated analysis and the visualization are needed.

In the context of the automated beam detection algorithm (see Section 5.5), currently the
visualization capabilities of R are used for investigation of analysis results. In the case of the
automatic beam path analysis (see Section 5.6), VisIt — the same system used for visual explo-
ration of the raw data (see Section 5.4) — serves as main tool for visual inspection of analysis
results. To integrate the automatic beam path analysis and the visualization of the raw data, the
user can either: (i) visualize the output data of the analysis in the context of the raw data directly
within VisIt, or (ii) create named selections based on the analysis results and apply the selec-
tions to the raw data for further analysis. Similar links could also be implemented between the
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automatic beam detection algorithm and VisIt but are not yet available.

To save analysis results the automatic beam path analysis creates for each detected particle
bunch a beam path file, i.e., a VTK file [155] of all computed particle paths including informa-
tion about the derived beam phases and path distances. In particular compared to the size of
the original data, the size of the additional beam path files is usually small; approximately 1.5
to 60 MB per beam path file in the case of the examples presented in Section 5.6.7. The user
can load and visualize the beam path files directly within VisIt. In VisIt the user can investigate
analysis results using a variety of high-quality visualizations, such as, 2D and 3D particle path
visualizations, scatter-plots, or 1D/2D and 3D histograms. VisIt can also display multiple visu-
alizations of different datasets within the same viewer window. By visualizing analysis results in
the context of the original data the user can effectively validate and investigate analysis results.
Figure 5.35 and 5.36 as well as Figure 5.37 to 5.39 shown earlier were, e.g., created using this
approach.

A second method for integrating the analysis with the visualization using VisIt is through
the concept of named selections. As described earlier in Section 5.4.3.1, the concept of named
selections allows for ID-based selection of particles within VisIt. Named selections, hence, allow
the user to define persistent selections, i.e., selection that select the same particle subset at each
timestep of a simulation. Based on the information derived in the beam path analysis a user can
define a named selection — e.g., via thresholding in ds and dm — and apply it to the original raw
data enabling detailed analysis of the so defined particle bunch. The user may chose to create
such named selections in two different ways. First, the beam path analysis can automatically
create a new named selection file for each detected particle bunch based on user-defined default
thresholds in ds and dm. VisIt can then load the so defined named selections and make them
accessible for the user. Second, a user may create named selections based on the information of
the beam path files directly using VisIt. The first option has the advantage that it is faster and
may, hence, be more appropriate in case that a larger number of datasets should be analyzed. The
second option then has the advantage that the user can interactively define the particle beam of
interest based on the path distance fields while receiving immediate feedback about the selection.

5.8 Results and Applications

Knowledge about the formation and temporal evolution of particles beams is paramount for the
understanding, optimization, and development of next generation a laser wakefield particle accel-
erators. In order to gain a deeper understanding of the complex acceleration process, an effective
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analysis needs to address complex questions such as: i) which particles become accelerated; ii)
how are particles accelerated, and iii) how was the beam of highly accelerated particles formed
and how did it evolve [106]. Furthermore, in order to optimize simulation and experimental set-
tings one needs to be able to: iv) investigate the quality of particle beams, and v) compare the
behavior and quality of multiple particle beams. This section describes the use of the proposed
methods to investigate these complex questions.

Section 5.8.1, describes how a user can identify and analysis particle beams in laser wake-
field accelerator simulation using the proposed framework for visual exploration of the data (see
Section 5.4). Following the use model described in Section 5.4.4, the user here first identifies
the particles of interest via thresholding at a single timestep, then traces the particles over time
to investigate the temporal evolution of the selected beam, and finally refines the selection based
on information from different timesteps to investigate and compare particles subsets behaving
differently over time.

Section 5.6.7 already showed that the automatic beam path analysis is able to effectively de-
fine particle beams. Section 5.8.2 now describes how a user can visualize and compare different
particle bunches based on the results of the automatic beam path analysis visualized using VisIt.
The described examples focus on the assessment the quality of particle beams and the analysis
of their temporal evolution.

5.8.1 High-Performance Visual Analysis of Particle Beams

This section present a specific example illustrating the use of the proposed system for high-
performance visual data analysis (see Section 5.4) to investigate 2D and 3D data produced by a
laser wakefield particle accelerator simulation. The datasets used here contain more than 400,000
and 90 million particles in the 2D and 3D datasets, respectively. The 2D data consists of 38
timesteps and has an overall size of about 1.3GB, including the index structures. The 3D dataset
consists of 30 timesteps and has an overall size of about 210GB, including the index. Each 3D
timestep has a size of about 7GB, including the index, and about 5GB without the index. The
example shown here first describes a detailed analysis of the 2D dataset and then extend the
analysis to the larger 3D dataset.

Following the use model described in Section 5.4.4, the analysis is performed in multiple
steps. First, to identify those particles that were accelerated, the user performs selection of
particles at a late time point of the simulation by using a threshold for the value for x-momentum,
px. By tracing the selected particles over time the user then analyzes the behavior of the beam
during late timesteps (Section 5.8.1.1). Having defined the beam, the user analyzes the formation
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Figure 5.43: a) Parallel coordinates and b) pseudocolor plot of the beam at t = 27. Corresponding
plots c,d) at t = 37. The context plot, shown in red, shows both beams selected by the user after
applying a threshold of px > 8.872∗1010 at t = 37. The focus plot, shown in green, indicates the
first beam that is following the laser pulse. The pseudocolor plots b) and d), show all particles
in gray and the selected beams using spheres colored according to the particle’s x-momentum,
px. The focus beam is the rightmost bunch in these images. At timestep t = 27, the particles of
the first beam (green in figure a) show much higher acceleration and a much lower energy spread
(indicated via px) than the particles of the second beam. At later times, the lower momentum
of the first beam indicates it has outrun the wave and moved into the decelerating phase, e.g., at
timestep t = 37.
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Figure 5.44: Particles of the beam at timestep 14 (top left) to 17 (bottom right). The color of
selected particles indicates x-momentum, px (blue=low, red=high), while non-selected particles
are shown in gray. Two main sets of particles entering the simulation at timestep t = 14 and
additional sets of particles entering at t = 15 can readily be identified.
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Figure 5.45: The traces of the beam particles during timesteps t = 14 to t = 17 as shown in
Figure 5.44. The positions of the selected particles at the different times are also indicated by
additional data points as well as annotations at the bottom of the figure indicating the begin and
end of the timestep in x direction. Here, color is used to indicates particle ID.

and evolution of the beam by tracing particles further back to the time where they entered the
simulation and became injected into the beam (Section 5.8.1.2). In this context, selection of
particles, tracing of particles over time, as well as refinement of particle selections based on
information from different timesteps are used as the main analysis techniques.

As this use case will illustrate, the ability to perform selection interactively and immediately
validate selections directly in parallel coordinates as well as other types of plots, such as pseu-
docolor or scatter-plots, enables much more accurate selection than previously possible. Tracing
of particles over time then enables researchers to better understand evolution of the beam. Using
the proposed system based on the combination of VisIt, FastBit, and parallel coordinates, the
user can rapidly identify subsets of particles of interest and analyze their temporal behavior. For
“small” datasets one will usually perform all analysis on a regular workstation while for larger
datasets VisIt can also be run in a distributed fashion so that all heavy computation is performed
on a remote machine where the data is stored and only the viewer and the GUI executed on a
local workstation.

5.8.1.1 Beam Selection

In order to identify the beam, i.e., find those particles that became accelerated, the user here first
concentrates on the last timestep of the simulation (at t = 37). Using the parallel coordinates
display, the user extracts the particles of interest by applying a threshold of px > 8.872 ∗ 1010.
As is visible in the parallel coordinates plot, those particles constitute two characteristic clusters
in x direction (Figure 5.43 c). Using a pseudocolor plot of the data, the physical structure of the
beam can effectively be analyzed (see Figure 5.43 d).

Tracing particles back in time, then shows that the highest momentum and lowest momentum
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Figure 5.46: a) By applying an additional threshold in x at timestep t = 14, the user separates
the two different sets of particles entering the simulation. b) The refinement result, shown in
physical space, includes all non-selected particles (gray) to provide context. c) Particle traces of
the complete beam and the refined selection. All plots show the complete beam in red and the
refined selection in green. After entering the simulation, the selected particles (green) define first
the outer part of the first beam at timestep t = 15. Later on at timesteps t = 16 and t = 17, these
particles become highly focused and define the center of the first beam.

spread bunch observed in the simulation is formed at timestep t = 27 by the first bunch following
the laser pulse (rightmost in these plots). In practice, the first beam following the laser pulse
is typically the one of most interest to the accelerator scientists. The fact that the second beam
shows higher or equal acceleration at the last timestep of the simulation is due to the fact that the
first beam will outrun the wave later in time and therefore switches into a phase of deceleration
while the second beam is still in an acceleration phase. In practice, when researchers want to
select only the first beam, they usually perform selection of the particles using thresholding in px

at an earlier time, e.g., t = 27, rather than the last timestep, here t = 37. By performing selection
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Figure 5.47: The beam at timesteps t = 14 to t = 22 in a temporal parallel coordinates plots. Here,
color indicates each of the discrete timesteps. The plot shows clearly the two different beams in
x and xrel . While the second beam shows equal to higher values in px during early timesteps
(t = 14 to t = 17), the first beam shows much higher acceleration at later times compared to the
second beam.

at an earlier time, one avoids selecting particles in the second beam while being sure to select all
particles in the first beam. In this specific use case the user is, however, interested in analyzing
and comparing the evolution of these two beams, which is why selection was performed at the
last timestep.

Figure 5.48(a and b) shows a similar example for the 3D particle dataset. At a much earlier
time t = 12 (x≈ 0.57∗10−3 compared to x≈ 1.3∗10−3 in the 2D case) particles are trapped and
accelerated, and the user selected particles in the first bunch via thresholding based on the mo-
mentum in x direction (px > 4.586∗1010) and x position (x > 5.649∗10−4) to exclude particles
in the secondary waves from the selection. In order to get an overview of the main relevant data,
the user removed the background from the data first by applying a threshold of px > 2.0 ∗ 109.
Figure 5.48b shows a volume rendering of the plasma density along with the selected particles
revealing the physical location of the selected beam within the wake.

5.8.1.2 Beam Analysis

Having defined the beam in the 2D dataset, the user then analyzes the formation of the beam
by tracing the selected particles back to the time when particles entered the simulation and were
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then injected into the beam. In Figure 5.44, the individual particles of the beam are shown at
timesteps t = 14 to t = 17. Here, color indicates the particles’ momentum in the x direction (px).
Figure 5.45 shows the particle traces over time colored according to particle ID’s. Different sets
of injection are readily visible, and two sets of particles appear at t = 14. The left bunch will be
injected to form a beam in the second wake period, which is visible at t > 14. A second group
of particles is just entering the right side of the box (recall that the simulation box is sweeping
from left to right with the laser, so that plasma particles enter it from its right side). This bunch
continues to enter at t = 15, and the particles stream into the first (rightmost) wake period. These
particles are accelerated and appear as a bunch in the first bucket for t > 15. At the following
timesteps t = 16 and t = 17, further acceleration of the two particle beams can be seen while
only a few additional particles are injected into the beam, and these are less focused.

Based on the information at timestep t = 14, the user refines the initial selection of the beam.
By applying an additional threshold in x, the user selects those particles of the beam that are
injected into the first wake period behind the laser pulse (see Figure 5.46a and 5.46b). By com-
paring the temporal traces of the selected particle subset (green) with the traces of the whole
beam (red), one can readily identify important characteristics of the beam (see Figure 5.46c).
After being injected, the selected particle subset (green) first defines the outer part of the first
beam at timestep t = 15, while additional particles are injected into the center of the beam. Later
on at timesteps t = 16 and t = 17, the selected particles become strongly focused and define the
center of the first beam. By refining selections based on information at an earlier time, the user
is able to identify characteristic substructures of the beam.

Temporal parallel coordinates then make possible the analysis of the general evolution of the
beam in multiple dimensions (see Figure 5.47). Along the x axis, two separate beams can be
seen at all timesteps (t = 14 to t = 22) with a quite stable relative position in x (xrel). At early
timesteps, both beams show similar acceleration in px while later on, at timestep t = 18 to t = 22
(magenta to lilac), the particles of the first beam show significantly higher acceleration with a
relatively low energy spread. Particles with a relatively high relative position in x direction are
found mainly at timesteps t = 14 and t = 15 due to the fact that new particles enter the simulation
window mainly during these times.

Figure 5.48c shows an example for the 3D dataset. Here, the traces of the particles selected
earlier in Figure 5.48a are shown. The user selected the particles at timestep t = 12 then traced
them back to timestep t = 9 where most of the selected particles enter the simulation window
and forward in time to timestep t = 14. As one can see in the plot, the selected particles are
constantly accelerated over time.
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Figure 5.48: a) Parallel coordinates of timestep t = 12 of the 3D dataset. Context view (gray)
shows particles selected with px > 2 ∗ 109. The focus view (red) consists of particles selected
with px > 4.856∗1010 && x > 5.649∗10−4, which indicates particles forming a compact beam
in the first wake period following the laser pulse. b) Volume rendering of the plasma density and
the selected focus particles (red). c) Traces of the beam. The user selected particles at timestep
t = 12, then traced the particles back in time to timestep t = 9 when most of the selected particles
entered the simulation window. The user then also traced the particles forward in time to timestep
t = 14. In this image, color is used to indicate px (blue=low, red=high). In addition to the traces
and the position of the particles, the image also shows the context particles at timestep t = 12 in
gray to illustrate where the original selection was performed. The figure shows that the selected
particles are constantly accelerated over time (increase in px).
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5.8.2 Beam Comparison and Visualization

Section 5.6 showed that the automatic beam path analysis is able to detect the main bunches of
interest in the example dataset. Having detected the particle bunches of interest one main ques-
tion is which bunch has the highest quality. This section demonstrates how one can investigate
and compare the quality of particle bunches based on the results from the automatic beam path
analysis (see Section 5.6). The quality of a bunch is characterized by several factors. A high-
quality beam should: (i) have low energy spread (indicated by its compactness in px); (ii) be
condensed in physical space; (iii) reach high energy levels (indicated by high px); and (iv) be
focused (indicated by low transverse momentum py and in 3D also pz).

Using the path distance functions ds and dm one can effectively compare the compactness
of different bunches of the same simulation simply by comparing their respective histograms.
Figure 5.49a, shows, e.g., the histograms of the distance in momentum space dm for the two
bunches detected in the example dataset. For the first bunch (red) many more particles with
low values of dm exist than for the second bunch, i.e., the first bunch will be more compact
in momentum space and therefore shows a lower energy spread. Similarly, the first bunch can
also be seen to be more condensed in physical space than the second bunch by comparing the
histograms of the distance in physical space ds (see Figure 5.49b). These findings indicate that
the first bunch is highly condensed in physical as well as momentum space and is therefore of
higher quality than the second bunch.

By comparing the temporal paths of all particles that form the two beams one can assess
which energy levels the two bunches achieve and how focused they are. To define the two particle
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Figure 5.49: a) Histogram of the distance in momentum space dm of all candidate particles
detected for each of the two bunches. b) Histogram of the distance in physical space ds of all
candidate particles detected for each of the two bunches. The main region of interest below the
default thresholds in dm and ds respectively is indicated in green in both figures. For the first
bunch many more particles with low dm and ds values exist indicating that this beam is more
condensed in both physical and momentum space and therefore of higher quality.
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Figure 5.50: a) Paths of both bunches in x/px space after applying the thresholds (ds <
10−6)&&(dm < 1010). Paths are colored according to py using the indicated color mapping
for both bunches. Although the second bunch achieves overall higher levels of acceleration the
first bunch shows much less variation in py while it exists. b) Density plot of y/py space at t = 24
(gray) and all particles of the first bunch with (ds < 10−6)&&(dm < 1010) shown in red and with
(ds < 2 ∗ 10−6)&&(dm < 1010) shown in blue. c) Density plot of y/py space at t = 43 (gray)
with particles of the second bunch shown using the same coloring scheme as in b. The timesteps
t = 24 and t = 43 were selected because these are the timesteps at which the according bunch
has its peak momentum in px. When comparing figure b and c one can see that the first bunch is
much more condensed in y/py space than the second bunch.

beams corresponding thresholds in dm and ds are applied first, using the same thresholds for each
of the two bunches. Figure 5.50a shows the temporal paths of the selected particles in x/px space
colored according to the transverse momentum py. The second bunch achieves higher levels of
px than the first bunch but also shows much more variation in py. This indicates that while the
second bunch reaches much higher energy levels than the first bunch it also shows more spread
in py. The fact that the second bunch is less condensed than the first bunch is even more apparent
when comparing their structure in y/py space at the time when they reach their peak energy.
Figure 5.50b shows the respective plot for the first bunch at timestep t = 24 and Figure 5.50c
for the second bunch at timestep t = 43. When comparing the two plots one can clearly see that
the second bunch is much less condensed in y/py space at its peak energy than the first bunch.
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Overall this analysis indicates that the first bunch: i) has a low energy spread, ii) is condensed in
physical space, and iii) is highly focused. Even though the first bunch has a lower peak energy
these findings indicate that it is in certain parameters of higher quality than the second bunch.
The proposed beam path analysis method not only enables the separation of different bunches
but also the analysis of their quality and processes contributing to the bunch-quality.

Investigation of the paths of the beam particles also enables analysis of the temporal evolution
of the two particle beams. From the beam phases computed in the reference path analysis (see
Figure 5.33) one already knows that the first bunch is formed earlier than the second bunch. It
then accelerates over a short period of time and then outruns the wave relatively quickly and
switches into the deceleration phase. The second bunch on the other hand is formed later and is
accelerated over a longer period of time. When comparing the traces of the two beams shown in
Figure 5.50a one can also see that the two bunches show a very different acceleration/deceleration
behavior. While the paths of the first bunch show a characteristic horseshoe-like shape the second
bunch shows a less smooth acceleration behavior and then decelerates more gradually than the
first bunch.

Using 3D particle path visualizations one can effectively investigate the temporal evolution of
particle beams in up to four data dimensions at once. Figure 5.51 shows, e.g., the particle paths of
the first bunch in x/y/py space colored according to px. Figure 5.52 shows an example of relative
particle paths for a bunch detected in dataset D (see Table 5.2). Visualizations of relative instead
of absolute particle paths allows investigation of the motion of particles within the simulation
window. Using VisIt a user can then also effectively analyze the temporal evolution of particle
beams via animations of the complete time series.
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Chapter 6

Conclusions

The overall objective of this research effort was the development of new capabilities to acceler-
ate scientific knowledge discovery from complex, large, multivariate scientific data. An analysis
framework based on the integration of data analysis and visualization has been proposed to en-
able efficient analysis of scientific data. Using two distinct example applications, this work has
demonstrated the effectiveness of the proposed approach to address relevant problems in devel-
opmental biology (Section 6.1) and high-energy physics (Section 6.2)

6.1 Visualization and Analysis of 3D Gene Expression Data

The proposed framework for knowledge discovery from 3D gene expression data helps biologists
who aim to discover potentially new, experimentally verifiable biological interactions, by pro-
viding them with the ability to define, analyze, and iteratively refine clusters in multiple, linked
views. For computational biologists, objective methods for classifying quantitative data points
in spatial datasets have been presented.

This research has shown how data clustering and visualization can be integrated into one
framework and how the developed system can be used effectively to explore and analyze 3D
spatial expression data. The analysis system MATLAB was integrated with the visualization
providing biologists seemless access to advanced data analysis methods and enabling bioinfor-
matics researchers to integrate their analysis directly with the visualization.

A system of linked multiple views has been presented that is used for data exploration and for
steering the analysis process, helping bridge spatial patterns of expression with abstract views of
quantitative expression information.
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Data clustering then provides means for automatically defining cell selections, depicting char-
acteristic data features and in this way improving the visualization. Dedicated post-processing of
clustering results based on visualization and user knowledge has been demonstrated to improve
the analysis. Proper definition of the number of clusters k is essential to ensure accurate grouping
of cells into clusters. This research effort has shown how the combination of εscatter as measure
to describe the relative physical scattering of clustering results and εexp can be used to suggest a
good initial value for k as well as a series of possibly good alternative values for k. In combina-
tion with visual validation of clustering results this approach has been shown to be effective for
determining appropriate values for k.

Analysis of 3D spatial gene expression data is a challenging task requiring unique strategies
not encountered in studies of 1D non-spatial data, such as microarray expression data. Using
the proposed integrated data visualization and analysis approach, this research has shown how
the pattern of a gene and its temporal variation can be defined and analyzed. Furthermore, this
research has demonstrated how suspected relationships between genes can be analyzed to address
the question of how the pattern of a gene is created by the action of multiple regulators.

Along with the first release of the BDTNP 3D gene expression database, the BDTNP has also
made a version of PointCloudXplore (PCX) freely available to the public [91]. Data clustering
and 3D parallel coordinates are today used regularly by BDTNP members and will soon also be
included in the public version of PCX.

One focus of potential future research could be the development of additional analysis tech-
niques that effectively integrate spatial and gene expression information. Adaptation of spatial
clustering methods, such as the dual clustering approach proposed by Cheng-Ru et al. [156], is
only one promising approach. Alternatively, one could perform clustering based on gene ex-
pression information only, split the resulting clusters into spatially distinct sub-clusters, and then
perform a re-clustering based on the centers of the detected sub-clusters. PCX currently uses
hierarchical clustering only for partitioning of the data. By traversing the data hierarchy created
in a hierarchical clustering, exploration of the data at multiple levels of detail becomes possible.
In addition to clustering of cells, clustering of genes as well as biclustering promises to provide
further insights into the data. Integration of these and other data analysis techniques, such as
expression boundary detection [94] or regression analysis to predict regulatory interaction [161],
into PCX should further increase its value for practical use and impact.
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6.2 Visualization and Analysis of Laser Wakefield Particle Ac-
celeration Data

Managing and gaining insight from vast amounts of data is widely accepted as one of the pri-
mary bottlenecks in science today. The research presented in this thesis is directed at enabling
rapid knowledge discovery from large, complex, multivariate, and time-varying LWFA simula-
tion datasets and using modern HPC platforms.

To achieve this objective, a novel approach for quickly creating histogram-based parallel
coordinates displays has been presented. This research leverages this form of visual informa-
tion display as the basis for forming complex multivariate range queries. This form of visual
information display has been combined with state-of-the-art index/query technology to quickly
compute conditional histograms as well as to efficiently extract subsets of data that meet certain
conditions. A performance study was conducted of each of the fundamental algorithms that form
a complete implementation in a production-quality, visual data analysis application with sup-
port for parallel computation. The study presented has shown the efficacy of the algorithms for
computing histograms and for performing particle subset selection. These algorithms have been
shown to have favorable scalability characteristics over a set of processor pool sizes ranging from
1 up to 100 on a modern HPC platform, a Cray XT4. From the scientist’s point of view, it is now
possible to perform a type of visual data analysis in a few seconds with this new framework as
compared to several hours required using legacy tools. These results are significant because they
show the successful synergy that can result when combining visual data analysis with scientific
data management technologies to solve challenging problems in scientific knowledge discovery.

Two novel methods for automatic analysis of particle beams in datasets generated by LWFA
simulations have been presented. Automatic beam detection, a novel approach based on bunch
lifetime analysis and fuzzy clustering, has been demonstrated to be effective for detecting the
highest-energy particle bunch in datasets produced by LWFA simulation. This thesis has also
introduced automatic beam path analysis, a novel approach for automatic detection and analysis
of multiple particle beams based on the complete temporal path of the particles that form them.
A detailed study of the performance of the automatic beam path analysis was conducted demon-
strating that the method is able to efficiently detect particle bunches of interest even in extremely
large 3D simulation datasets.

Via integration of the introduced automatic analysis methods with visualization, the ap-
proaches developed in this research enable efficient analysis of extremely large 3D particle
datasets. A detailed case study showed how these technologies can be used in concert to explore
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large, time-varying LWFA simulation datasets addressing relevant issues, such as (i) detection
and definition of particle beams, (ii) analysis of the formation and acceleration of particle beams,
(iii) investigation of the quality of particle beams, and (iv) comparison of the behavior and quality
of multiple particle beams.

Concerning possible directions for future research, one might want to include the exploration
of different avenues for parallelizing the most expensive parts of the visual data analysis process-
ing pipeline. As visual data analysis is typically an interactive process, minimizing the response
time is crucial to maximize effectiveness. Similarly, parallelizing the automated data analysis
procedures would likely make possible much more efficient analysis of large collections of sim-
ulation datasets. The research presented in this thesis was mainly focused on the analysis of
particle data while the field data is mainly used to provide context in the visualization. Devel-
opment of new methods to provide closer links between the particle and the field data holds the
potential to further increase the value and impact of the research presented in this thesis.
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Appendix A

PointCloudXplore: Interface to MATLAB

This appendix provides an overview of the PCX/MATLAB interface. Section A.1 and A.2 first
describe how to integrate a function defined in MATLAB into PCX. Section A.3 then gives an
overview of the used named conventions a developer has to consider when defining a MATLAB
function for PCX. A set of simple examples illustrating the functionality and different applica-
tions of the interface are presented in A.4.

A.1 Defining a MATLAB Function for PointCloudXplore

Defining a new MATLAB function that can be accessed directly from PCX involves three simple
steps. First, one needs to create a M file (file extension .m) specifying the MATLAB function.
M files can be created either directly in MATLAB or using a simple text editor. In order to be
accessible from PCX the definition of the function must follow the name conventions described
in Section A.3. Second, to make the new function accessible for PCX one needs to define a
PCXM file describing how PCX should call and represent the function (see Section A.2). Third,
to inform PCX that a new MATLAB function is available one needs to either: i) copy the PCXM

file into PCX’s default FUNCT IONS folder, or ii) set the function path using the according “Set
Function Path” option available in the MATLAB menu located in the main menu bar of PCX.

At start-up PCX parses all PCXM files located at the last specified function path. Based on
the information defined in the PCXM files PCX then automatically creates for each function an
according entry in the MATLAB menu bar. The GUI used to specify the input parameters and
data for a function is created on the fly at runtime when the user calls the function. Since all
components are created at runtime one can add or modify MATLAB functions while PCX is
running without the need to restart the program. Using the “Refresh” or “Set Function Path”
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option available in the main menu bar of PCX one can inform PCX that a MATLAB function
has been changed or added. PCX then parses all PCXM files located at the current function path
and updates its MATLAB menu accordingly.

A.2 PCXM File Specification

A PCXM file specifies: i) How PCX should represent the MATLAB function in the GUI; ii)
How PCX can access the function; iii) Which input parameters the function expects, i.e., which
data does PCX need to export to MATLAB upon calling the function; and iv) Which output the
function creates, i.e., which data does PCX need to import from MATLAB after the function
has complete execution. PCX expects the file extension .pcxm for PCXM files. PCXM files are
text files that can be created using any text editor. In a PCXM files the symbol “:” is used as
separator, i.e., after each “:” a new entry is expected to appear. Table A.1 describes the structure
of a PCXM file.

Table A.1: PCXM file specification.

Specifier Description

TYPE: Type of the MATLAB function., e.g., “Plot” or “Filter”. PCX presents
all function that have the same type together in a submenu of the MAT-
LAB menu.

NAME: Name of the function as it should appear in the main menu.

DIR: Path to the directory where the M file is located specifying the function
to be called. Can be empty in case the M file is located in the same
folder as the PCXM file.

CALL: Defines which command PCX should issue to MATLAB in order to
call the function. Based on this string PCX also identify which data it
needs to transfer to MATLAB before calling the function and import
after completion of the function. This call therefore needs to follow the
name conventions for the input/output parameters as specified below
(see Section A.3).
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IN GENES: Specifies the maximum number of genes the MATLAB function takes
as input. Leave empty in case that the number of genes the function
takes as input is not limited. This parameter is ignored in case that
genes are not an input parameter of the function.

IN BRUSHES: Specify the maximum number of Cell Selectors the MATLAB function
takes as input. Leave empty in case that the number of Cell Selectors the
function takes as input is not limited. This parameter is in case that Cells
Selectors are not an input parameter of the function, i.e., input brushes
is not specified (see Section A.3).

IN DOUBLE: Specifies a list of additional double input parameters required by the
MATLAB function. For each parameter specify the name and which
text should appear in the GUI separated by a “:”. Leave empty in case
that no additional double input parameters are required. NOTE: Send to
MATLAB as mxDOUBLE CLASS.

IN INT: Specifies a list of additional integer input parameters required by the
MATLAB unction. For each parameter specify the name and which
text should appear in the GUI separated by a “:”. Leave empty in case
that no additional double input parameters are required. NOTE: Send to
MATLAB as mxINT 32 CLASS.

IN BOOL: Specifies a list of additional Boolean input parameters required by the
MATLAB function. For each parameter specify the name and which
text should appear in the GUI separated by a “:”. Leave empty in case
that no additional double input parameters are required. NOTE: Send to
MATLAB as mxINT 32 CLASS.
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A.3 Name Conventions

In order to enable PCX to call a MATLAB function properly the PCXM header file needs to
follow the here described name conventions. The function call to be issued by PCX (specified in
CALL: in the PCXM file described above) should look as follows:

[out put genes,out put genenames,out put brushes,out put brushnames] =
f unctionname

(input genes, input genenames, input brushes, input brushnames,

input cell pos, input unrolled pos, input cellneighbors, input f ilename,“otherinput parameters′′)

The output parameters of the function to be imported by PCX are shown in blue and the input
parameters of the function to be send from PCX to MATLAB are shown in green. All input
and output parameters are optional. Based on whether the function call contains the key words
described in Table A.2 PCX identifies which actions it needs to take in order to call the function
properly. In general any combination of input and output parameters is valid. However the fol-
lowing parameters are treated as dependend: (i) input genenames is only send if input genes is
specified; (ii) input brushnames is only send if input brushes is specified; (iii) output genenames
is ignored in case that output genes is not specified; (iv) output brushnames is ignored in case
that output brushes is not specified.

Table A.2:Name conventions of the PCX-MATLAB interface.

Name Description
input genes Matrix (2D-array) with the expression information of the genes.

Send: 2D array of type mxDOUBLE CLASS of size m×n with m

being the number of input genes and n being the number of cells.
Access in MATLAB: genei = input genes(i, :) returns the ex-
pression level of the i’th gene send to MATLAB in all cells.

input genenames String array with the names of the input genes.
Send: 2D array of type mxCHAR CLASS

Access in MATLAB: genei = input genenames(i, :) returns the
name of the i’th gene send to MATLAB.
Note: This parameter is ignored in case that no genes are send
(input genes not specified).
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Table A.2:Name conventions of the PCX-MATLAB interface.

Name Description
input brushes Matrix (2D-array) with the selection information of the cell selec-

tions used as input. A cell selector may define a smooth selection.
Selection values should always be in the range of [0,1] where 0
indicates that a cell is not selected and 1 that a cell is selected.
Send: 2D array of type mxDOUBLE CLASS of size m×n with m

being the number of cell selections sent and n being the number
of cells of the embryo.
Access in MATLAB: brushi = input brushes(i, :) returns the se-
lection filter array of the i’th cell selector send to MATLAB defin-
ing which cells are selected.

input brushenames String array with the names of the input Cell-Selectors.
Send: 2D array of type mxCHAR CLASS

Access in MATLAB: brushi = input brushames(i, :) returns the
name of the i’th Cell Selector send to MATLAB
Note: This parameter is ignored in case that no Cell Selectors are
send (i.e., input brushes is not specified).

input cellpos Send x,y,z cell positions to MATLAB.
Send: 2D array of type mxDOUBLE CLASS of size 3×n with n

being the number of cells of the embryo.
Access in MATLAB: The following MATLAB calls re-
turn the x,y,z position of all cells of the embryo respec-
tively: x = input cell pos(1, :); y = input cell pos(2, :); z =
input cell pos(3, :)

input unrolledpos Send the AP/DV positions derived from the Unrolled View. The
data is send as 2xn array with n being the number of cells.
Send: 2D array of type mxDOUBLE CLASS of size 2×n with n

being the number of cells of the embryo.
Access in MATLAB: The following MATLAB calls return the
projected AP, DV position of all cells of the embryo respectively:
ap = input cell pos(1, :); dv = input cell pos(2, :)
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Table A.2:Name conventions of the PCX-MATLAB interface.

Name Description
input cellneighbors Send array with the neighborhood information of all cells as de-

fined by the voronoi diagram used in the CellView of PCX.
Send: 2D array of type mxDOUBLE CLASS of size n×m with
n being the number of cells of the embryo and m being the max-
imum number of neighbors of a cell. For each cell that has less
than the maximum number of neighbors entries of −1 are added
to fill the rows of the matrix.
Access in MATLAB: neighi = input cellneighbors(i, :) returns
all neighbors of cell the with index i. First all valid neighbors are
listed. An entry of −1 indicates that the cell does not have any
more neighbors.
Note: In order to be able to send a matrix with the same number
of entries in each row −1 entries are added as neighbors to cells
which do not have the maximum number of neighbors. All entries
larger than −1 indicate valid neighbors.

input filename Send the name (and path) of the current PointCloud file to MAT-
LAB
Send: 2D array of type mxCHAR CLASS of size 1×m with m

being the length of the filename string.
Access in MATLAB: f ilename = input f ilename

Note: In case that PCX is started from the shell with a path as
input option then the given input path is returned which may not
be an absolute but a relative path. If the PointCloud was opened
in the GUI then the full path is always send to MATLAB.

output genes Matrix (2D-array) with the newly created gene patterns to be im-
ported by PCX.
Expected format: 2D array of type mxDOUBLE CLASS of size
m×n with m being the number of genes returned and n being the
number of cells of the embryo.

output genenames List of strings with the names for the newly created gene patterns.
Expected format: 2D array of type mxCHAR CLASS with m en-
tries with m being the number of output genes returned.
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Table A.2:Name conventions of the PCX-MATLAB interface.

Name Description
Note: This parameter is ignored in case that output genes is
not an output parameter of the MATLAB function. In case that
output genes is specified but output genenames is not, then PCX
automatically assigns a default name to the imported genes.

output brushes Matrix (2D-array) with the newly created Cell Selectors to be im-
ported by PCX.
Expected format: 2D array of type mxDOUBLE CLASS of size
m× n with m being the number of Cell Selectors returned and n

being the number of cells of the embryo.

output brushnames List of strings with the names for the newly created Cell-
Selectors.
Expected format: 2D array of type mxCHAR CLASS with m en-
tries, with m being the number of Cell Selectors returned.
Note: This parameter is ignored in case that output brushes is
not an output parameter of the MATLAB function. In case that
output brushes is specified but output brushnames is not then
PCX automatically assigns a default name to the imported Cell
Selectors.
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A.4 Examples

This sections describes a set of simple examples illustrating the use of PCX/MATLAB interface
and some of its possible applications. Examples A.1 - A.6 show: i) a screenshot of PCX with
the according result of the script, ii) the MATLAB code included in the according M file, and
iii) the description included in the PCXM file. In most cases the screenshot also shows the GUI
automatically created by PCX to allow the user to define the input for the MATLAB functions.

A.4.1 Plotting

MATLAB provides a rich set of visualizations which one may want to use to investigate the
data. Examples A.1 - A.4 illustrate some simple gene expression plots (including cell locations)
created using MATLAB.

A.4.2 Filtering

Gene expression filters derive one or multiple pseudo-expression patterns from a set of input
gene expression patterns. In order to export the filtered values to PCX one needs to save the data
in the output genes array. Here (i,:) corresponds to all values for the newly created gene with
index i. As illustrated in Sections 4.7.5 and 4.7.6, gene expression filters have a wide range of
applications, such as, modeling of genetic regulatory networks, analysis of the temporal change
of a pattern, comparison of expression patterns, or cluster validation.

A.4.3 Selection

MATLAB provides a rich set of data analysis tools (e.g. clustering) which one may want to use
to detect specific features in the data. PCX can import these selection and save them as cell
selectors. Cell selectors created via MATLAB can be analyzed using any view available in PCX.
One can also use these selections in later MATLAB based analysis.

In order to create a selection in MATLAB one needs to create an array and define for each cell
a value between [0,1] and save the values in the output brushes array. Here (i,:) corresponds to
all values for the newly created cell selector with index i. In general the selection values should
be either 0 (not selected) or 1 (selected). PCX in general allows any value between [0,1] as filter
value for cell selector. It is, however, not guaranteed that every view supports smooth selections
properly, i.e., cell selectors with selection filer values other than 0, 1 properly. Some views may
display all cells with a filter value larger than some threshold as selected rather than a smooth
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selection. Example A.6 defines such a smooth selection by copying the expression values of the
input genes to the output brushes array.

Figure A.1: Gene expression histogram in MATLAB: This
example function creates a histogram of the gene expression
values of a user defined gene using a user specified number of
bins.

Histogram.m:
function Histogram(input genes ,
nbins)
n = cast(nbins , ’double’);
hist(input genes,n);

Histogram.pcxm
TYPE:Plot
NAME:Histogram
DIR:
CALL:Histogram(input genes, nbins)
IN GENES:1
IN BRUSHES:0
IN DOUBLE:
IN INT:nbins: Number of bins
IN BOOL:

Figure A.2: Gene expression scatter plot in MATLAB: This
example function creates a 2D scatter plot of two genes col-
ored according to the values of a third gene. The size of the
data points is defined by a user-defined input parameter.

Scatterplot.m
function Scatterplot(input genes,S)
x = input genes(1,:);
y = input genes(2,:);
c = input genes(3,:);
size = cast(S,’double’);
scatter(x,y,S,c);

Scatterplot.pcxm
TYPE:Plot
NAME:Scatterplot
DIR:
CALL:Scatterplot(input genes,S)
IN GENES:3
IN BRUSHES:
IN DOUBLE:
IN INT:S:Point Size
IN BOOL:
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Figure A.3: Cell position plot in MATLAB: This example
function creates a 3D scatter plot of the x, y, z cell positions.
Color is defined with respect to a selected gene channel. The
size of the data points is defined by a separate user-defined
input parameter.

CellPlot.m
function CellPlot(input cellpos ,
input genes , S)
x = input cellpos(1,:);
y = input cellpos(2,:);
z = input cellpos(3,:);
c = input genes(1,:);
size = cast(S , ’double’);
scatter3(x,y,z,size,c);

CellPlot.pcxm
TYPE:Plot
NAME:Cell Plot
DIR:
CALL:CellPlot(input cellpos ,
input genes , S)
IN GENES:1
IN BRUSHES:
IN DOUBLE:
IN INT:S:Point Size
IN BOOL:

Figure A.4: Unrolled view in MATLAB: This example func-
tion creates a 2D unrolled point plot colored according to the
expression values of a selected gene. The size of the data
points is defined by a user-defined input parameter.

Unrolled.m
function Unrolled(input genes ,
input unrolledpos , S)
x = input unrolledpos(1,:);
y = input unrolledpos(2,:);
c = input genes(1,:);
size = cast(S , ’double’);
scatter(x,y,size,c);

Unrolled.pcxm
TYPE:Plot
NAME:Unrolled
DIR:
CALL:Unrolled(input genes ,
input unrolledpos , S)
IN GENES:1
IN BRUSHES:
IN DOUBLE:
IN INT:S:Point Size
IN BOOL:
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Figure A.5: Expression difference MATLAB filter: This
simple example filter computes the difference between two
input patterns and creates a new pseudo-gene-channel with
the according information. In the image the two input pat-
terns are shown via expression surfaces (left). The difference
pattern is shown using the Unrolled View MATLAB script
described above which is called from PCX using the newly
created pseudo-gene channel as input.

Diff.m
function
output genes=Diff(input genes)
output genes=input genes(2,:)-
input genes(1,:);

Diff.pcxm
TYPE:Arithmetic
NAME:Diff
DIR:
CALL:output genes=Diff(input genes);
IN GENES:2
IN BRUSHES:
IN DOUBLE:
IN INT:
IN BOOL:

Figure A.6: Cell selection using MATLAB: This simple ex-
ample selection function defines a set of smooth cell selection
by using the input expression values to define a cell selec-
tion. Gene expression values are send as input from PCX
to MATLAB. These values are then simply copied to the
output brushes array so that PCX then creates a set of cell
selectors with the according filter values. The figure shows
two example cell selectors created based on the expression of
eve and f tz using this simple MATLAB function. The selec-
tions are visualized in the 3D cell view and a 2D scatter plot
of eve and ftz. The window in the bottom left shows the GUI
for the SimpleSelect function.

SimpleSelect.m
function output brushes =
SimpleSelect(input genes)
output brushes = input genes;

SimpleSelect.pcxm
TYPE:Selection
NAME:Simple Select
DIR:
CALL: output brushes =
SimpleSelect(input genes);
IN GENES:
IN BRUSHES:
IN DOUBLE:
IN INT:
IN BOOL:
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H. Childs, P.-T. Bremer, B. Whitlock, S. Ahern, J. Meredith, G. Ostrouchov,
K. Joy, B. Hamann, C. Garth, M. Cole, C. Hansen, S. Parker, A. Sanderson,
C. Silva, and X. Tricoche, “DOE’s SciDAC Visualization and Analytics Center
for Enabling Technologies – Strategy for Petascale Visual Data Analysis Success,”
CTWatch Quarterly, vol. 3, no. 4, pp. 32–40, 2007. [Online]. Available: http:
//vis.lbl.gov/Publications/2007/vacet-Oct2007-CTWatchQuarterly.pdf
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